首页|基于优化深度学习的低照度图像超分辨率重建方法的研究

基于优化深度学习的低照度图像超分辨率重建方法的研究

Research on Super-resolution Reconstruction of Low Illuminance Images Based on Optimized Deep Learning

扫码查看
为提升低照度多波段谱密度图像的分辨和检测能力,本文提出基于优化深度学习的低照度图像超分辨率重建方法.首先,构建低照度多波段谱密度图像超分辨特征采样模型,通过图像压缩感知方法实现对低照度图像的向量像素重构;其次,通过模糊度辨识和匹配滤波方法进行低照度图像的降噪滤波,构建低照度多波段谱密度图像的压缩光谱维度检测模型;再次,通过图像去噪、压缩重建和谱特征重组建立正则化约束模型来恢复图像的光谱信息;最后,根据同一空间区域的全体光谱数据的关联性特征分布,采用优化深度学习算法实现对低照度图像的特征分配和结构重组,实现对低照度图像的超分辨率重建.该方法对低照度图像超分辨率重建时可对图像细节部分进行补全,且其去噪和去模糊能力较好,可有效保留图像的关键信息,其信噪比均为26 dB,结构相似度高于0.94,均优于对比方法,具有较好的应用价值.
In order to improve the resolution and detection ability of low-illuminance multi-band spectral density imag-es,a super-resolution reconstruction method based on optimized deep learning is proposed.Firstly,the super-resolu-tion feature sampling model of low-illumination multi-band spectral density image is constructed,and the vector pixel reconstruction of low-illumination image is realized by image compression sensing method.Secondly,the noise reduc-tion filtering of low-illumination image is carried out by fuzzy degree identification and matching filtering method,and the compression spectral dimension detection model of low-illumination multi-band spectral density image is construct-ed.Through image denoising,compression reconstruction and spectral feature recombination,a regularization con-straint model is established to recover the spectral information of the image.Finally,according to the correlation fea-ture distribution of all spectral data in the same space region,an optimized deep learning algorithm is adopted to real-ize the feature allocation and structure recombination of the low-illumination image,and the super-resolution recon-struction of the low-illumination image is realized.In super-resolution reconstruction of low-illumination images,this method can complete the details of the image,and its denoising and defuzzing capabilities are good,and the key infor-mation of the image can be effectively retained.The signal-to-noise ratio is 26 dB,and the structural similarity is higher than 0.94,which is superior to the comparison method,and has good application value.

optimizing deep learninglow illumination imagesuper-resolution reconstructionimage denoising

徐浙君

展开 >

浙江邮电职业技术学院 人工智能学院,浙江 绍兴 312366

优化深度学习 低照度图像 超分辨率重建 图像去噪

2024

科技通报
浙江省科学技术协会

科技通报

CSTPCDCHSSCD
影响因子:0.457
ISSN:1001-7119
年,卷(期):2024.40(4)
  • 13