首页|集中供热系统能耗异常数据识别及修复方法研究

集中供热系统能耗异常数据识别及修复方法研究

扫码查看
在集中供热系统中,精确的能耗预测是实现高效系统管理的重要前提.为有效处理监测系统采集数据中的异常样本,进而提高能耗预测效果,本文以实际工程的运行数据为基础,采用基于箱线图与孤立森林算法的异常数据识别方法和MissForest填补法,对数据集进行预处理工作.设置对比实验,利用LightGBM算法构建能耗预测模型验证本文所提数据预处理方法对能耗预测效果提升的有效性.实验结果表明:本文提出的数据预处理方法可有效且准确地识别并修复异常数据,对预测模型的优化效果显著.
Research on the Identification and Repair Methods of the Energy Consumption Anomalous Data in District Heating System
For district heating systems,accurate energy consumption prediction is an important prerequisite for efficient system management.Based on the operation data of the practical project,the anomaly data recognition method based on boxplot and isolation forest,and the filling method of MissForest are used for the preprocessing of the dataset.A comparative experiment was set up,and the energy consumption prediction models based on LightGBM are constructed to verify the effectiveness of the data preprocessing method proposed in this paper on the improvement of energy consumption prediction effect.The experimental results show that the data preprocessing method proposed in this paper can effectively and accurately identify and repair the abnormal data,and has a significant effect on the optimization of the predictive model.

district heating systemsmachine learningdata preprocessingenergy consumption prediction

颜如雪、赵秉文、武雁奇、郑振海、金佳豪

展开 >

浙江理工大学 建筑工程学院,杭州 310018

浙江理工大学 科技与艺术学院,浙江 绍兴 312369

集中供热系统 机器学习 数据预处理 能耗预测

浙江理工大学科技与艺术学院产教融合示范性品牌专业建设项目

Kycjrhzy2302

2024

科技通报
浙江省科学技术协会

科技通报

CSTPCDCHSSCD
影响因子:0.457
ISSN:1001-7119
年,卷(期):2024.40(7)
  • 3