首页|中国XCO2浓度时空分布特征及影响因素研究

中国XCO2浓度时空分布特征及影响因素研究

扫码查看
本文基于GOSAT卫星遥感监测的XCO2 数据,分析2011-2020年我国XCO2的时空动态特征,并采用Pearson相关系数以及时空地理加权回归模型,探讨自然和人类活动对中国XCO2分布的影响机制.结果表明:(1)高浓度XCO2在空间上呈现"东南高-西北低"的分布格局,在局部地区存在高浓度聚集现象.除新疆和西藏西部沙漠地区外,低浓度XCO2按照高纬度到低纬度递减,东部与中西部地区浓度差距超过6 g/mL.(2)2011-2020年的XCO2年均变化幅度超过5.5%;月均XCO2在年内呈周期变化,浓度变化速率最高出现在春夏过渡期,且每年夏季都会出现XCO2相对于该年的快速下降过程.(3)XCO2与各影响因素的相关性由高到低排序为:化石燃料燃烧的碳排放、植被、降水以及气温.随着时间的推移,化石燃料燃烧产生的碳排放对XCO2分布的正向影响空间范围逐渐缩小,而气温的影响在影响强度和影响空间范围上均呈现增大趋势.
Study on Temporal and Spatial Distribution Characteristics and Influencing Factors of XCO2 Concentration in China
Based on GOSAT satellite remote sensing XCO2 data,the study analyzes the spatio-temporal dynamics characteristics of XCO2 in China from 2011 to 2020,and adopts pearson correlation coefficient and geographically and temporally weighted regression model to explore the influence mechanism of natural and human activities on the distribution of XCO2 in China.The results indicate that:(1)High XCO2 exhibits a spatial pattern of"southeast high-northwest low",with localized high-concentration aggregation phenomena.Except in the deserts in western Xinjiang and Tibet,the low XCO2 decreases from high to low latitude,with an over 6 g/mL concentration gap between the eastern and central-western regions.(2)The average annual change range of XCO2 from 2011 to 2020 is over 5.5%.The monthly average XCO2 shows seasonal variations during the year,with the highest rate of concentration change occurring during the spring-summer transition period.Additionally,a rapid decrease in XCO2 relative to the annual mean is observed every summer.(3)The correlation between XCO2 and influencing factors ranks as follows:carbon emissions from fossil fuel combustion,vegetation,precipitation and temperature.Over time,the positive impact of carbon emissions from fossil fuel combustion on the spatial distribution of XCO2 gradually diminishes,while the influence of temperature intensifies both in intensity and spatial range.

XCO2time series analysisgeographically and temporally weighted regression modelinfluencing factors

章莹莹、朱汉聪、杨莉

展开 >

南京邮电大学 地理与生物信息学院,南京 210023

南京邮电大学 管理学院,南京 210023

XCO2 时间序列分析 时空地理加权回归模型 影响因素

江苏省高等学校哲学社会科学研究重大项目江苏省研究生实践创新计划项目江苏省研究生科研创新计划项目

2023SJZD021SJCX22_0234KYCX22_0979

2024

科技通报
浙江省科学技术协会

科技通报

CSTPCDCHSSCD
影响因子:0.457
ISSN:1001-7119
年,卷(期):2024.40(8)