首页|基于ABC-BP神经网络的盾构掘进速度及地表沉降预测

基于ABC-BP神经网络的盾构掘进速度及地表沉降预测

扫码查看
近年来人工智能技术发展迅猛,其对大数据的处理能力使其在解决城市盾构隧道工程问题中发挥着愈加突出的作用.本文着眼于单一地层及复合地层,通过盾构掘进参数的数理统计分析,总结出各掘进参数的最优范围,采用构建ABC-BP(artificial bee colony-back propagation)神经网络建立预测模型的方法,基于地层特性、隧道属性预测掘进速度及地表沉降.研究结果表明:ABC-BP神经网络可以在单一地层及复合地层中对掘进速度和地表沉降进行精准的预测.研究成果有利于对盾构施工进行合理、高效地调控,提高盾构施工过程的安全性,降低施工对周围环境的影响.
Prediction of Advanced Rate of Shield Tunnel and Surface Settlement Based on ABC-BP Neural Network
In recent years,with the rapid development of artificial intelligence technology,its processing ability of big data makes it play an increasingly prominent role in solving the problems of urban shield tunnel engineering.This paper focuses on single stratum and composite stratum,summarizes the optimal range of each tunneling parameter through mathematical statistical analysis of shield tunneling parameters,adopts the method of constructing ABC-BP(artificial bee colony-back propagation)neural network to establish prediction model,and predicts tunneling velocity and surface settlement based on formation characteristics and tunnel attributes.The results show that the ABC-BP neural network can accurately predict the excavation velocity and surface settlement in single formation and composite formation.The research results of this paper are conducive to the rational and efficient regulation of shield construction,improve the safety of shield construction process,reduce the impact of the surrounding environment of the construction team.

composite stratumABC-BP neural networksurface settlement predictionoptimization of shield tunneling parameters

张箭、邓添铭、易骏飞、曹舰文、李嘉豪、俞凯翰

展开 >

河海大学 土木与交通学院,南京 210098

复合地层 ABC-BP神经网络 地表沉降预测 盾构掘进参数优化

国家自然科学基金项目

52178386

2024

科技通报
浙江省科学技术协会

科技通报

CSTPCDCHSSCD
影响因子:0.457
ISSN:1001-7119
年,卷(期):2024.40(10)