首页|基于异构集成模型的连续刚构桥预拱度预测

基于异构集成模型的连续刚构桥预拱度预测

扫码查看
预拱度在大跨度悬臂桥梁的施工线形监控中扮演着重要角色,提高预测精度能够确保施工阶段和成桥状态的线形尽可能符合设计要求.为获得更好的预测性能,本文提出了一种基于自适应集合加权的SSA-BPNN-RF(sparrow search algorithm-back propagation neural network-random forest)异构集成模型.该模型利用不同算法之间的协作来提高预测性能,为了验证该模型的可行性,将训练好的模型应用于湖南某连续刚构桥预拱度预测,并与BPNN、RF、BPNN-RF、SSA-BPNN和SSA-RF 5种预测模型进行对比.研究结果表明:SSA-BPNN-RF异构集成模型在平均绝对误差、均方根误差和拟合度等评价指标上表现最佳.此外,BPNN-RF集成和SSA分别对BPNN和RF都有积极的影响,进一步验证了异构集成的有效性.因此,SSA-BPNN-RF异构集成模型具有高精度和更好的适应性,在工程实践中具有重要的指导意义.
Precamber Prediction Method of Continuous Rigid Frame Bridge Based on Heterogeneous Integrated Model
The precamber plays an important role in the monitoring of the construction profile of long-span cantilever bridge,improving the prediction accuracy can ensure that the profile of the construction stage and the finished state of the bridge meets the design requirements as much as possible.In order to obtain better prediction performance,a SSA-BPNN-RF(sparrow search algorithm-back propagation neural network-random forest)heterogeneous integration model based on adaptive set weighting is proposed in this paper.In order to verify the feasibility of this model,the trained model was applied to predict the precamber of a continuous rigid frame bridge in Hunan province,and compared with five prediction models,namely BPNN,RF,BPNN-RF,SSA-BPNN and SSA-RF.The results show that the SSA-BPNN-RF heterogeneous integrated model has the best performance on the average absolute error,root mean square error and fit degree.In addition,BPNN-RF integration and SSA have positive effects on BPNN and RF respectively,further verifying the effectiveness of heterogeneous integration.Therefore,SSA-BPNN-RF heterogeneous integration model has high precision and better adaptability,which has important guiding significance in engineering practice.

continuous rigid frame bridgeprecamberSSA-BPNN-RF heterogeneous integration modelmachine learningprediction accuracy

杨美良、李振国、李文慧、李涛

展开 >

长沙理工大学 土木工程学院,长沙 410114

连续刚构桥 预拱度 异构集成模型 机器学习 预测精度

国家自然科学基金项目湖南省教育厅重点科学研究项目

5187807321A0213

2024

科技通报
浙江省科学技术协会

科技通报

CSTPCDCHSSCD
影响因子:0.457
ISSN:1001-7119
年,卷(期):2024.40(10)