首页|基于MIC-SSA-SVM的时间敏感网络配置可行性检测

基于MIC-SSA-SVM的时间敏感网络配置可行性检测

扫码查看
时间敏感网络(TSN)通过精准的时钟同步、高精度的流量调度和智能化的网络管控机制实现多业务流混合传输.高效的网络配置检测技术是网络安全稳定运行的关键保障,它可以快速检测网络配置是否可行,降低网络运维成本,提高网络使用效率.为了提高TSN网络配置检测的效率,本文提出一种基于特征优选和麻雀搜索算法优化支持向量机的算法模型(MIC-SSA-SVM).文中首先采用最大信息系数(MIC)来评估特征的相关性,进行特征优选.接着,选择SSA来对SVM的惩罚因子C与核参数g进行优化,并利用优化后的SVM算法模型实现TSN网络配置可行性检测.实验结果表明,相比于现有算法,所提出的模型在检测TSN网络配置可行性方面更加高效,分类准确率能达到97.6%.而且模型收敛速度快,寻优能力强.
Feasibility Detection for Time-Sensitive Network Configurations Based on MIC-SSA-SVM
Time-Sensitive Networking(TSN)supports precise clock synchronization,high-accuracy flow scheduling,and intelligent network control mechanism to realize mixed transmission of multiple service flows.Effi-cient detection schemes for network configuration are the crucial guarantees to maintain a safe and steady network system.Here,the feasibility should be achieved in a short time,reduce the maintenance costs of network opera-tion,and improve the efficiency of network use.In order to improve the efficiency of TSN network configuration detection,this paper proposes an algorithmic model based on feature optimization and sparrow search algorithm optimized support vector machine(MIC-SSA-SVM).In the paper,firstly,the maximum information coefficient(MIC)is used to evaluate the relevance of features for feature optimization.Secondly,SSA is chosen to optimize the penalty factor C and kernel parameter g of SVM,and the optimized SVM algorithm model is used to implement TSN network configuration feasibility detection.The experimental results show that compared with the existing al-gorithms,the proposed model is more efficient in detecting the feasibility of TSN network configuration,and the classification accuracy can reach 97.6%.Moreover,the model has fast convergence speed and strong optimization ability.

Time-Sensitive Networkingfeature optimizationmaximal information coefficientsparrow search al-gorithmsupport vector machine

唐铖杰、王澄、郇战、陈林

展开 >

常州大学 微电子与控制工程学院,江苏 常州 213000

常州大学 计算机与人工智能学院,江苏 常州 213000

时间敏感网络 特征优选 最大信息系数 麻雀搜索算法 支持向量机

国家自然科学基金2023年江苏省研究生科研创新计划项目

61772248KYCX23_3072

2024

昆明理工大学学报(自然科学版)
昆明理工大学

昆明理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.516
ISSN:1007-855X
年,卷(期):2024.49(1)
  • 22