首页|基于可加性模型的云南松和华山松碳储量模型构建

基于可加性模型的云南松和华山松碳储量模型构建

扫码查看
森林生态系统是我国陆地自然生态体系中较大的储碳库,在世界碳平衡中起着很关键的作用.因此森林系统碳储量研究,对解决全球气候变化问题和保证全球的可持续发展有重要的意义.本研究在云南省大姚县选取实地调查样地,将云南松和华山松作为研究对象,进行实地调察,根据实地调查数据实测云南松和华山松生物量及碳储量,并通过3 种碳储量估算模型结合可加性聚合法,对云南松和华山松碳储量进行估测并与实测值进行对比,验证所采用的模型对云南松和华山松碳储量预测的适用性并比较不同模型的效果和准确度.通过研究得出结论,在云南松碳储量预测评价中,利用生物换算系数建立的碳储量模型预测能力较强:MAB在1.013~2.683 之间,MPB在4.353~9.855 之间,MAB均低于5,MPB均低于10,模型对云南松各部分碳储量有较好的预测能力;平均误差(E)在 1.225%~2.272%之间均在 4%以内,数据稳定并接近于实测值.在华山松碳储量预测评价中,利用蓄积量建立的林分碳储量模型预测能力较强:MAB 在1.685~2.196 之间,MPB在6.560~9.120 之间,MAB均低于 5,MPB均低于 10,模型对华山松各部分碳储量有较好的预测能力;平均误差(E)在-3.783%~3.934%之间均在 4%以内,数据稳定并接近于实测值.
Construction of Carbon Storage Models for Pinus Yunnanensis and Pinus Armandii Based on Additive Models
The forest ecosystem plays a crucial role in the global carbon balance as a large carbon storage reser-voir in China's terrestrial natural ecosystem.Therefore,the study of carbon storage in forest systems is of great sig-nificance for addressing global climate change issues and ensuring global sustainable development.This study se-lected a field survey sample plot in Dayao County,Yunnan Province,with Pinus yunnanensis and Pinus armandii as the research objects for field investigation.Based on the field survey data,the biomass and carbon storage of Pinus yunnanensis and Pinus armandii were measured.Three carbon storage estimation models were combined with additive aggregation method to estimate the carbon storage of Pinus yunnanensis and Pinus armandii and compare them with the measured values,verify the applicability of the models used for predicting carbon reserves of Pinus yunnanensis and Pinus armandii,and compare the effectiveness and accuracy of different models.Through research,it has been concluded that in the prediction and evaluation of carbon storage in Pinus yun-nanensis,the carbon storage model established using biological conversion coefficients has strong predictive abili-ty:MAB is between 1.013 and 2.683,MPB is between 4.353 and 9.855,MAB is below 5,and MPB is below 10.The model has good predictive ability for carbon storage in various parts of Pinus yunnanensis;The average error(E)is within 4%between 1.225%and 2.272%,and the data is stable and close to the measured value.In the prediction and evaluation of carbon storage of Pinus armandii,the forest carbon storage model established u-sing stock volume has strong predictive ability:MAB is between 1.685 and 2.196,MPB is between 6.560 and 9.120,MAB is below 5,MPB is below 10,and the model has good predictive ability for carbon storage of various parts of Pinus armandii.The average error(E)is within 4%between-3.783%and 3.934%,and the data is stable and close to the measured value.

carbon storagePinus yunnanensisPinus armandiimodel prediction

杨俊豪、张皓东、李永昌、刘书敏

展开 >

昆明理工大学 环境科学与工程学院,云南 昆明 650093

云南省林业调查规划院,云南 昆明 650051

碳储量 云南松 华山松 模型预测

云南省林业基金

LGY2020211068

2024

昆明理工大学学报(自然科学版)
昆明理工大学

昆明理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.516
ISSN:1007-855X
年,卷(期):2024.49(2)
  • 23