首页|基于Double DQN的用户群体满意度最大化在线服务信誉度量

基于Double DQN的用户群体满意度最大化在线服务信誉度量

扫码查看
传统的信誉度量无法实时反映动态环境中服务质量和用户需求的变化.在线服务信誉度量机制依赖于用户反馈评分且服务于用户,用户满意度会受该机制的影响.未考虑用户群体满意度最大化的信誉度量机制难以吸引用户群体.此外,用户评价标准的不一致性会使不同用户的评分难以直接比较,从而导致信誉度量结果不客观.为此,作者提出了一种基于Double DQN的用户群体满意度最大化在线服务信誉度量方法.首先,针对用户评价标准不一致的情况,借助Kendall tau距离定义用户群体满意度;其次,将动态环境下的在线服务信誉度量问题通过马尔可夫决策过程建模为一个寻找最大化用户群体满意度的优化问题;最后,采用Double DQN算法求解该优化问题.通过在Movielens数据集上进行实验验证了该方法的有效性.实验结果表明该方法能够给出最优信誉决策策略,从而最大化用户群体满意度.
Online Service Reputation Measurement for Maximizing User Group Satisfaction Based on Double DQN
The traditional reputation measurement cannot reflect real-time changes in the quality of services and user needs in a dynamic environment.Online service reputation measurement mechanism relies on user feedback ratings and serves users,user satisfaction is affected by the mechanism.A reputation measurement mechanism that does not consider to maximize of user group satisfaction makes it difficult to attract user groups.In addition,the inconsistency of user evaluation criteria makes it difficult to directly compare the ratings of different users,which leads to non-objective reputation measurement results.To address these issues,a reputation measurement meth-od based on Double DQN for maximizing user group satisfaction with online services is proposed.The method first defines the user group satisfaction with the Kendall tau distance for the case of inconsistent user evaluation crite-ria.Secondly,the online service reputation measurement problem in a dynamic environment is modeled as an opti-mization problem to maximize user group satisfaction through the Markov decision process.Finally,the Double DQN algorithm is used to solve this optimization problem.The effectiveness of the method is verified by the exper-iments on the Movielens dataset.The experimental results show that the method can give an ideal reputation deci-sion-making strategy,which maximizes user group satisfaction.

online servicereputation measurementuser preferenceKendall tau distancedeep reinforcement learning

付晓东、陈秋琳、冯艳

展开 >

昆明理工大学信息工程与自动化学院,云南昆明 650500

昆明理工大学云南省计算机技术应用重点实验室,云南昆明 650500

云南省科学技术院,云南昆明 650228

在线服务 信誉度量 用户偏好 Kendall tau距离 深度强化学习

国家自然科学基金项目云南省新型研发机构培育对象孵化服务平台建设(一期)项目

62362043202204BQ040010

2024

昆明理工大学学报(自然科学版)
昆明理工大学

昆明理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.516
ISSN:1007-855X
年,卷(期):2024.49(4)
  • 4