首页|基于改进粒子群算法优化的增程式电动汽车能量管理策略

基于改进粒子群算法优化的增程式电动汽车能量管理策略

扫码查看
为了进一步提高增程式电动汽车的整车综合性能,提出了一种基于改进粒子群算法优化的多点式能量管理策略.基于AVL-Cruise和Matlab/Simulink搭建整车系统仿真模型以及能量管理策略,基于改进的PSO算法,以循环工况下的燃油经济性、排放和发电机能量转化损失率为目标函数,以发动机的工作点为优化变量,构建了多目标优化模型,离线优化得到在整个循环工况下的发动机工作点的Pareto最优解.结果表明:改进的粒子群算法在传统算法的基础上,提高了种群求解精度的同时增强了算法的寻优能力.提出的改进粒子群优化的多点式能量管理策略与传统多点式能量管理策略相比,综合性能提升16.4%,与恒温器和功率跟随型能量管理策略相比,综合性能提升了 33.3%和26.5%,优化效果显著.
Energy Management Strategy for Range-Extended Electric Vehicles Based on Improved Particle Swarm Optimization
To improve the overall performance of range-extended electric vehicles(REEV),a multi-point en-ergy management strategy utilizing an enhanced Particle Swarm Optimization(PSO)algorithm is proposed.The vehicle system simulation model and energy management strategy are developed using AVL-Cruise and Matlab/Simulink.An improved PSO algorithm is employed to construct a multi-objective optimization model,targeting fuel economy,emissions,and generator energy conversion loss rate under cycle conditions,with the engine operat-ing point as the optimization variable.Offline optimization provides Pareto optimal solutions for engine operating points across various cycle conditions.The enhanced PSO algorithm shows better population solution precision and optimization capability compared to the traditional PSO algorithm.The proposed multi-point energy management strategy based on this improved PSO algorithm achieves a 16.4%improvement in overall performance compared to conventional strategies.Furthermore,it shows a notable enhancement of 33.3%and 26.5%in performance compared to thermostat and power-following energy management strategies,respectively.

range-extended electric vehiclesrange extenderenergy managementparticle swarm optimizationcomprehensive evaluation index

王贵勇、思晓文、王伟超、王俊翰

展开 >

昆明理工大学云南省内燃机重点实验室,云南昆明 650500

增程式电动汽车 增程器 能量管理 粒子群算法 综合评价指标

云南省重大科技专项计划项目

202402AE090009

2024

昆明理工大学学报(自然科学版)
昆明理工大学

昆明理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.516
ISSN:1007-855X
年,卷(期):2024.49(4)
  • 12