首页|基于上下文信息筛选的篇章级神经机器翻译

基于上下文信息筛选的篇章级神经机器翻译

扫码查看
在篇章神经机器翻译领域,现有模型往往未对融入的上下文信息进行有效筛选,导致噪声增加和模型性能下降.为此,论文提出了一种基于篇章上下文信息筛选(Context-Filtered Docu-ment Translation,CFDT)的机器翻译方法.该方法通过引入句内约束注意力(Intra-Sentence Con-straint Attention,ISCA)和筛选注意力(Filter Attention,FA)机制,实现了对篇章上下文信息的精细化管理和有效利用.ISCA模块专注于句子内部信息,提升了模型长序列表征能力;FA模块则通过计算注意力分数和应用掩码操作,筛选出与当前词汇翻译最相关的上下文信息,从而排除了冗余和不相关信息.实验结果表明,该方法在中英和英德翻译任务中,相较于现有模型,在BLEU值上取得了显著提升,证明了上下文信息筛选在篇章级神经机器翻译中的积极作用.
Context-Filter for Document-Level Neural Machine Translation
In the field of document neural machine translation,existing models often fail to effectively filter the incorporated contextual information,leading to increased noise and a decline in model performance.To address this issue,the paper proposes a machine translation method based on Context-Filtered Document Translation(CFDT).This method achieves fine-grained management and effective utilization of document contextual infor-mation by introducing Intra-Sentence Constraint Attention(ISCA)and Filter Attention(FA)mechanisms.The ISCA module focuses on intra-sentential information,enhancing the model's ability to represent long sequences;the FA module,on the other hand,filters out the most relevant contextual information for the current word transla-tion by calculating attention scores and applying masking operations,thereby excluding redundant and irrelevant information.Experimental results show that this method has achieved significant improvements in BLEU scores for Chinese-English and English-German translation tasks compared to existing models,proving the positive role of context information filtering in document-level neural machine translation.

document-level machine translationcontext-filterneural machine translationattention mecha-nism

赖华、张元、郭军军、高盛祥、余正涛

展开 >

昆明理工大学信息工程与自动化学院,云南 昆明 650500

云南省人工智能重点实验室,云南 昆明 650500

篇章翻译 上下文筛选 神经机器翻译 注意力机制

2024

昆明理工大学学报(自然科学版)
昆明理工大学

昆明理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.516
ISSN:1007-855X
年,卷(期):2024.49(6)