首页|基于YOLOV7架构的轻量化路面病害检测模型

基于YOLOV7架构的轻量化路面病害检测模型

扫码查看
YOLOV7用于路面病害检测存在参数冗余、检测效率较低、模型体量过大等问题.为了解决上述问题,利用MobileOne网络代替原有主干特征提取网络,引入轻量坐标注意力模块Coordi-nate Attention(CA)到网络中,提出了基于GSConv的YOLOV7 Slim-Neck,并通过重参数思想融合模型运算过程,使用Focal-EIoU Loss替代CIoU Loss以解决样本分类不均衡的问题.研究结果表明:引入Focal-EIoU Loss后能够平衡样本的不均匀性,加快模型的收敛;MobileOne网络在减少模型参数的同时提高了模型的精度;CA模块加强了模型的特征提取能力;Slim-Neck在保证学习能力的同时,大幅减少模型参数;相较于传统的YOLOV7架构,所提出的模型参数量减少了 78%,图像处理速度是原来的3倍,mAP性能指标上升1.71%,F分数上升0.022.该轻量化模型便于移动平台部署,具有明显的工程应用优势.
Lightweight Model of Pavement Damage Detection Based on YOLOV7 STBZ Architecture
YOLOV7 has problems such as parameter redundancy,low detection efficiency,and excessive model volume when used for pavement disease detection.To solve the above problems,a MobileOne network is used to replace the original backbone feature extraction network.The lightweight coordinate attention module Coordinate Attention(CA)is introduced into the network.The YOLOV7 Slim-Neck based on GSConv is proposed,and the model operation process is fused by the idea of multiple parameters.In training,Focal-EIoU Loss is used instead of CIoU Loss to solve the problem of unbalanced sample classification.The results show that the introduction of Focal-EIoU Loss can balance the inhomogeneity of samples and accelerate the convergence of the model.The MobileOne network improves the accuracy of the model while reducing the model parameters.The CA module strengthens the feature extraction ability of the model.Slim-Neck greatly reduces the model parameters while en-suring the learning ability.Compared with the traditional YOLOV7 architecture,the proposed model parameters are reduced by 78%,the image processing speed is three times of the original,the mAP performance index is in-creased by 1.71%,and the F score is increased by 0.022.The lightweight model is convenient for mobile plat-form deployment and has obvious engineering application advantages.

pavement engineeringpavement damagetarget detectionYOLOV7lightweightattention mecha-nismloss function

朱振祥、高国华、段美栋、郭桂宏、刘朝晖、赵全满

展开 >

山东高速股份有限公司,山东济南 250014

山东高速工程检测有限公司,山东济南 250002

山东建筑大学交通工程学院,山东济南 250101

路面工程 路面病害 目标检测 YOLOV7 轻量化 注意力机制 损失函数

2024

昆明理工大学学报(自然科学版)
昆明理工大学

昆明理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.516
ISSN:1007-855X
年,卷(期):2024.49(6)