首页|比较Mask-RCNN与Mimics在上颌窦建模中的应用

比较Mask-RCNN与Mimics在上颌窦建模中的应用

扫码查看
目的:比较Mask-RCNN深度学习模型与Mimics 三维软件在上颌窦建模中的应用.方法:应用Mask-RCNN 及Mimics对纳入的50例患者锥形束CT影像资料进行上颌窦重建并测量上颌窦体积,比较两者重建的效果并对上颌窦体积进行数据分析.结果:在上颌窦建模过程中,应用Mask-RCNN对上颌窦进行图像分割、后处理及重建仅需30余秒,使用Mimics对每例患者上颌窦图像进行手动阈值分割后重建需数十分钟;两者测量的上颌窦体积无显著性差异(P>0.05).结论:Mask-RCNN深度学习算法优于Mimics,可以更快速准确的重建上颌窦,体现了人工智能在口腔颌面医学影像学领域的辅助诊断价值.
Application of Mask-RCNN and Mimics in Maxillary Sinus Modeling
Objective:To compare the application of Mask RCNN deep learning model and Mimics 3D software in maxillary sinus modeling.Methods:Mask-RCNN and Mimics were applied to reconstruct the maxillary sinus and measure the volume of maxillary sinus from conical beam CT images in 50 patients included.The reconstruction effects of the two methods were compared,and the volume of the maxillary sinus was analyzed.Results:In the process of modeling the maxillary sinus,using Mask-RCNN for image segmentation,post-processing,and recon-struction only took more than 30 seconds,and using Mimics for manual threshold segmentation and reconstruction of maxillary sinus images for each patient took about tens of minutes.There was no significant difference in the vol-ume of the maxillary sinus measured between two methods(P>0.05).Conclusion:The Mask RCNN deep learning algorithm is superior to Mimics and can reconstruct the maxillary sinus more quickly and accurately,reflecting the auxiliary diagnostic value of artificial intelligence in the field of oral and maxillofacial medical imaging.

artificial intelligenceimage segmentationcone-beam computed tomographythree-dimensional reconstructionmaxillary sinus volume

王蓉、帕克扎提·色依提、王铁梅、张懿、钱堃

展开 >

海军军医大学第一附属医院上海长海医院口腔科 上海 200433

南京大学医学院附属口腔医院 南京市口腔医院 南京大学口腔医学研究所 口腔颌面医学影像科 江苏南京 210008

东南大学自动化学院 江苏南京 210008

人工智能 实例分割 锥形束CT 三维重建 上颌窦体积

江苏省自然科学基金面上项目

BK20150089

2024

口腔医学研究
武汉大学口腔医学院

口腔医学研究

CSTPCD北大核心
影响因子:0.48
ISSN:1671-7651
年,卷(期):2024.40(6)
  • 15