首页|应用麻雀搜索和概率神经网络的储能电池故障诊断

应用麻雀搜索和概率神经网络的储能电池故障诊断

扫码查看
储能是构建新型电力系统的核心技术,其中,锂离子电池电化学储能是当前的主要形式,对实现"双碳"目标意义重大.故障诊断对于保障电池储能系统安全运营意义重大,尤其是微小故障的准确诊断能有效预防严重故障的发生,然而,传统故障诊断方法时效性差、精度较低,难以捕捉微小故障特征.因此,提出了一种应用麻雀搜索算法(sparrow search algorithm,SSA)改进的概率神经网络(probabilistic neural network,PNN)的储能电池微小故障诊断方法.首先,通过对锂离子电池故障类别分析故障特性,提取微小故障发生后的状态特征信息;然后,将磷酸铁锂储能电池故障信号分解成一系列特征向量并输入SSA-PNN模型;最后,开展了实验验证研究.结果表明,与传统的基于误差反向传播算法的故障诊断方法相比,基于SSA-PNN的故障诊断方法精度达到99.7%,具有更高的诊断精度和实时性.
Energy Storage Battery Fault Diagnosis by Applying Proba-bilistic Neural Network Optimized by Sparrow Search Algorithm
Energy storage is the core technology for building new power systems,among which,electrochemical energy storage of lithium-ion batteries is the main form at present and is of great significance to achieve the goal of"double carbon".Fault diagnosis is of great sig-nificance to ensure the safe operation of battery energy storage system,especially the accurate diagnosis of minor faults can effectively prevent the occurrence of serious faults,however,the traditional fault diagnosis method has poor timeliness and low accuracy,and it is difficult to capture the characteristics of minor faults.Therefore,a probabilistic neural network(PNN)improved by applying the sparrow search algorithm(SSA)was proposed for the diagnosis of minor faults in energy storage batteries.First,the fault characteristics were analyzed by the lithium-ion battery fault categories to extract the state feature information after the occurrence of minor faults.Then,the lithium iron phosphate energy storage battery fault signal was decomposed into a series of feature vectors and input into the SSA-PNN model.Finally,an experimental validation study was carried out.The results show that,compared with the traditional fault diagnosis method based on error back propagation algorithm,the SSA-PNN-based fault diagnosis method achieves 99.7%accuracy with higher diagnostic accuracy and real-time performance.

lithium iron phosphate batteryenergy storage batteryfault diagnosisneural network algorithmsparrow search algo-rithm

喻思维、张雪松、林达、李正阳、熊瑞

展开 >

北京理工大学机械与车辆学院,北京 100084

国网浙江省电力有限公司电力科学研究院,杭州 310014

磷酸铁锂电池 储能电池 故障诊断 神经网络 麻雀搜索

浙江省国家电网电力有限公司科技项目

5211DS21N006

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(3)
  • 23