首页|基于特征分块的赤足足迹人身识别算法

基于特征分块的赤足足迹人身识别算法

扫码查看
为了提高赤足足迹人身识别算法的准确率,提出了一种基于深度学习的足迹识别算法.足底各区域所受压力的不同导致了它们包含的信息量存在一定的差异性,为了获取更稳定、区分度更高的特征,该算法采用ResNet50作为基础网络,在特征层进行分块处理.构建了一个包含2 000人的赤足足迹库进行训练和一个包含3 000人的赤足足迹库进行测试,该算法利用500人1 000幅测试图在测试库上首位识别准确率达到了98.50%,优于常规的ResNet50网络.实验表明,基于特征分块的足迹识别算法在赤足足迹识别中获得了很好的识别效果.
Barefoot Footprint Person Identification Algorithm Based on Feature Partitioning
In order to improve the accuracy of the barefoot footprint-based person identification algorithm,a deep learning-based foot recognition algorithm was proposed.The differing pressure experienced by different regions of the foot sole results in variations in the amount of information they contain.In order to obtain more stable and discriminative features,ResNet50 was utilized as the underlying network,and block processing was performed on the feature layer.A barefoot footprint database containing 2 000 individuals was constructed for training,and another database containing 3 000 individuals was used for testing.The algorithm achieves a top-1 recognition accuracy of 98.50%on the testing database using 1 000 test images from 500 individuals,surpassing the performance of the conventional ResNet50 network.It is observed in the experiment that the feature-based segmentation approach achieves excellent recognition results in barefoot footprint identification.

footprintpersonal recognitiondeep learningfeature extractionfeature partitioning

金益锋、赵晓蕊、崔均健、陈伟卿、王国栋、蒋雪梅

展开 >

公安部鉴定中心,北京 100038

中国人民公安大学侦查学院,北京 100038

大连恒锐科技股份有限公司,大连 116085

足迹学 人身识别 深度学习 特征提取 特征分块

公安部科技强警基础专项中央级公益性科研院所基本科研业务费专项

2021JC172022JB040

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(3)
  • 16