首页|基于改进NGO算法的煤体应力反演

基于改进NGO算法的煤体应力反演

扫码查看
大直径钻孔卸压是防治煤矿冲击地压的有效手段之一,研究钻进过程煤体应力的变化情况对防止冲击地压有重要意义.目前关于钻进参数与煤体应力的关系模型研究较少且精度有限,对此提出一种基于北方苍鹰优化算法(northern gos-hawk optimization,NGO)与支持向量回归(support vector regression,SVR)的PSO-NGO-SVR煤体应力反演模型.首先,该模型在NGO种群初始化阶段引入Tent混沌映射,并将粒子群算法(particle swarm optimization,PSO)的优势融入到北方苍鹰算法中,使改进后的北方苍鹰算法拥有更好的性能;接着,使用改进后的北方苍鹰算法对支持向量回归中的超参数迭代寻优;最后,以迭代后的最优超参数建立模型.结果表明:改进后北方苍鹰算法的敛速度和收敛精度有较大提升,PSO-NGO-SVR煤体应力反演模型拥有较高精度.
Coal Stress Inversion Based on Improved NGO
The large diameter borehole pressure relief is one of the effective means used to prevent rock burst in coal mines.It is of great significance to study the change of coal body stress during drilling to prevent the rock burst.At present,the relational model be-tween drilling parameters and coal stress is rarely studied,and the precision is limited.Therefore,a new PSO-NGO-SVR coal stress in-version model was proposed based on northern goshawk optimization(NGO)and support vector regression(SVR).Firstly,the Tent chaotic mapping was introduced into the model during the initialization phase of the NGO population,and the advantages of particle swarm optimization(PSO)were integrated into the northern hawk algorithm,resulting in better performance of the improved northern hawk algorithm.Next,the improved northern eagle algorithm was used to iteratively optimize hyperparameters in support vector regres-sion.Finally,the model was established with the optimal hyperparameters after iteration.The results show that the convergence speed and accuracy of the improved northern eagle algorithm are greatly improved,and the PSO-NGO-SVR coal stress inversion model has relatively high accuracy.

northern goshawk optimizationsupport vector regression(SVR)particle swarm optimization(PSO)stress inversion

胡坤、王阳、刘心强、李彦忠

展开 >

深部煤矿采动响应与灾害防控国家重点实验室,淮南 232001

安徽理工大学机械工程学院,淮南 232001

中国矿业大学矿业工程学院,徐州 221116

北方苍鹰算法 支持向量回归(SVR) 粒子群优化(PSO) 应力反演

国家重点研发计划安徽省重点研发计划

2020YFB1314203202004a07020043

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(4)
  • 12