首页|基于CEEMD-BiLSTM-RFR的短期光伏功率预测

基于CEEMD-BiLSTM-RFR的短期光伏功率预测

扫码查看
由于短期光伏预测中气象因素的时间尺度不同,直接分析其对光伏功率的相关性,易忽略时间尺度的影响,进而导致预测模型误差.为提高光伏功率预测精度,构建了预测模型.首先,利用互补集合经验模态分解(complementary empirical mode decomposition,CEEMD)将光伏序列进行分解,得到在不同时间尺度上的光伏分量;然后,通过Pearson相关系数分析各光伏分量与空气温度、太阳辐射度、风速、风向和空气湿度的关系,对于强相关分量建立关于气象因素的随机森林回归(random forest regression,RFR)预测模型,弱相关分量直接通过双向长短期记忆网络(bidirectional long short-term memory neural network,BiLSTM)进行预测;并将预测求和输出.通过安徽省蚌埠市光伏电站7月实测数据进行验证,实验结果表明,所提预测模型CEEMD-BiLSTM-RFR相比传统预测模型有较好的预测精度.
Short-term Photovoltaic Power Prediction Based on CEEMD-BiLSTM-RFR
Since the time scales of meteorological factors in short-term photovoltaic power prediction are different,time scales are usually ignored in the analysis of the correlation between time scales and photovoltaic power,leading to errors in the prediction models.To improve the prediction accuracy of photovoltaic power,the CEEMD-BiLSTM-RFR prediction model was constructed.Firstly,the photovoltaic power was decomposed by complementary empirical mode decomposition(CEEMD)to get the modalities on different time scales.Secondly,the relationship between each photovoltaic component and meteorological factors was analyzed by Pearson correlation coefficient.Strongly correlated components were predicted by the random forest regression(RFR)prediction model.Weakly correlated components perform prediction through bidirectional long short-term memory neural network(BiLSTM).Finally,the results of each component prediction were combined to obtain the final prediction result.It is verified by using the measured data of a photovoltaic station in Bengbu,Anhui Province,in July.The results show that the proposed prediction model CEEMD-BiLSTM-RFR has better prediction accuracy than the traditional prediction model.

PV power predictioncomplementary ensemble empirical mode decompositioncorrelation analysisBiLSTMrandom forest regression

冯沛儒、江桂芬、徐加银、叶剑桥、李生虎

展开 >

国网安徽省电力有限公司经济技术研究院,合肥 230061

合肥工业大学电气与自动化工程学院,合肥 230009

光伏功率预测 互补集合经验模态分解 相关性分析 BiLSTM 随机森林回归

国家自然科学基金国家电网安徽省电力公司经济技术研究院项目

51877061SGAHJY00GHJS2310060

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(5)
  • 26