科学技术与工程2024,Vol.24Issue(7) :2617-2624.DOI:10.12404/j.issn.1671-1815.2305592

基于卷积神经网络的移动机器人声源定位方法综述

Review of Methods Based on CNN for Mobile Robot Sound Source Localization

高春艳 赖光金 吕晓玲 白祎扬 张明路
科学技术与工程2024,Vol.24Issue(7) :2617-2624.DOI:10.12404/j.issn.1671-1815.2305592

基于卷积神经网络的移动机器人声源定位方法综述

Review of Methods Based on CNN for Mobile Robot Sound Source Localization

高春艳 1赖光金 1吕晓玲 1白祎扬 1张明路1
扫码查看

作者信息

  • 1. 河北工业大学机械工程学院,天津 300401
  • 折叠

摘要

听觉系统是机器人感知周围环境信息的重要途径之一,精准有效地进行声源定位,可极大提高移动机器人的感知与决策能力.将声源定位应用于危险环境救援与巡检具有重要工程意义.随着深度学习的广泛应用,引入卷积神经网络(convolutional neural networks,CNNs)的声源定位效果显著改善.将移动机器人声源定位研究从网络架构与改进、声音特征类型、数据仿真与增强,以及多模态信息融合四个角度进行综合对比及分析,并对技术的应用提出思考与展望.

Abstract

The auditory system is considered one of the crucial pathways for robots to perceive environmental information.The per-ception and decision-making capabilities of mobile robots are greatly enhanced by accurate and effective sound source localization,making it highly significant for applications in hazardous environment rescue and inspection.With the widespread adoption of deep learning,the effectiveness of sound source localization has been notably improved through the introduction of convolutional neural net-works(CNNs).Sound source localization for mobile robots was comprehensively compared and analyzed from four perspectives:net-work architecture and improvements,types of sound features,data simulation and augmentation,as well as the fusion of multimodal in-formation.Reflections and prospects on the application of the technology are also presented.

关键词

移动机器人/声源定位/卷积神经网络/麦克风阵列/到达方向估计

Key words

mobile robot/sound source localization/convolutional neural network/microphone array/direction of arrival

引用本文复制引用

基金项目

国家重点研发计划(2022YFB4701101)

国家自然科学基金(U1913211)

出版年

2024
科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
参考文献量61
段落导航相关论文