首页|一种改进轻量化神经网络的齿轮箱故障诊断方法

一种改进轻量化神经网络的齿轮箱故障诊断方法

扫码查看
针对齿轮箱故障诊断精度低以及深度神经网络模型对计算机硬件要求高等问题,提出了 Shuffle-ECANet网络模型用于齿轮箱故障诊断.该模型以轻量化神经网络ShuffleNet V2为基础,在保留网络轻量化结构的同时对网络模型进行了优化,采用Gelu激活函数增强了模型非线性变换能力,嵌入高效通道注意力(efficient channel attention,ECA)模块以提高网络性能.深度可分离卷积提高了网络模型的运算效率,通道混洗技术使得信息更加流通,提高了特征表达能力.实验结果表明,本文所提网络模型在保证轻量化的同时适用于不同噪声工况的齿轮箱故障诊断,在原信号下可达99.6%的诊断准确率,在添加了信噪比为-8 dB的高斯白噪声下可达92.7%的诊断准确率.本文所提方法为神经网络更好地应用于齿轮箱故障诊断提供了一条新的途经.
A Gearbox Fault Diagnosis Method Based on Improved Lightweight Neural Network
Aiming at the low precision of gearbox fault diagnosis and the high requirement of computer hardware for deep neural net-work model,a Shuffle-ECANet network model was proposed for gearbox fault diagnosis.The model was based on the lightweight neural network ShuffleNet V2,which optimized the network model while retaining the lightweight structure of the network.The Gelu activation function was used to enhance the nonlinear transformation capability of the model,and the efficient channel attention(ECA)module was embedded to improve network performance.Depthwise separable convolution improved the computational efficiency of the network model,and channel shuffling technology maken information more fluid and improved feature expression capabilities.The experimental results show that the network model proposed in this paper is suitable for gearbox fault diagnosis under different noise conditions while ensuring light weight.The diagnostic accuracy can reach 99.6%under the original signal,and the signal-to-noise ratio of-8 dB is added.The diagnostic accuracy can reach 92.7%under Gaussian white noise.The method proposed provides a new way for the neural network to be better applied to gearbox fault diagnosis.

fault diagnosisgearboxlightweight networkShuffleNet V2

杨青松、郝如江、范亚飞、邓飞跃、杨文哲

展开 >

石家庄铁道大学机械工程学院,石家庄 050043

石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043

故障诊断 齿轮箱 轻量化网络 ShuffleNet V2

国家自然科学基金

12272243

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(7)
  • 13