首页|基于机器学习与心肺复苏诊疗标准的辅助诊疗算法

基于机器学习与心肺复苏诊疗标准的辅助诊疗算法

Auxiliary Diagnosis and Treatment Algorithm Based on Machine Learning and Cardiopulmonary Resuscitation Diagnosis and Treatment Standards

扫码查看
为了将机器学习在心肺复苏领域的应用落实到现实临床工作之中,提出了一种基于机器学习并融合心肺复苏诊疗标准的辅助诊疗算法.采用了随机森林、梯度提升树、极端梯度提升作为基模型,使用投票法进行模型融合,并引入模型解释算法(shapley additive explanation,SHAP)过滤掉Shapley值较低的特征重新进行训练,得出的模型在心肺复苏诊疗标准下创建参数空间进行寻优,最终得到最优诊疗方案.结果表明,融合心肺复苏诊疗标准后的算法更符合临床实际,可为临床诊疗提供辅助,提高心肺复苏成功率.
In order to implement the application of machine learning in the field of cardiopulmonary resuscitation(CPR)into real clinical work,an assisted diagnosis and treatment algorithm based on machine learning and fused with CPR diagnosis and treatment standards was proposed.Random forest,gradient boosting tree and extreme gradient boosting were used as the base model.The voting method was used for model fusion,and the shapley additive explanation algorithm(SHAP)was introduced to filter out the features with lower shapley values for retraining,and the resulting model creates a parameter space under the cardiopulmonary resuscitation diagnos-tic and treatment standard for optimization,and finally obtains the optimal diagnostic and treatment plan.The resulting model was opti-mized by creating a parameter space under the CPR diagnosis and treatment criteria,and the optimal treatment plan was finally ob-tained.The results show that the algorithm after integrating the CPR diagnosis and treatment standards is more in line with the clinical reality,which can provide assistance for clinical diagnosis and treatment and improve the success rate of CPR.

machine learningCPRparameter spaceSHAP

冯航测、孙洁、张瑛琪、张友坤

展开 >

华北理工大学电气工程学院,唐山 063210

河北医科大学第一医院急诊科,石家庄 050031

机器学习 心肺复苏 参数空间 SHAP

河北省省级科技计划(2020)河北省财政厅老年病防治项目(2020)河北省财政厅政府资助临床医学人才培养项目(2021)

20477703DLNB202010LS202104

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(7)
  • 15