首页|基于长短时记忆神经网络的抽油机井故障智能预警

基于长短时记忆神经网络的抽油机井故障智能预警

扫码查看
准确预测抽油机井故障对油田生产具有重要意义.针对新疆油田某区块抽油机井故障情况,统计了 500 口油井的生产数据,明确了结垢、结蜡、杆管腐蚀、杆管疲劳、杆管偏磨5种引发抽油机井故障的主要因素;基于长短时记忆神经网络(long short-term memory networks,LSTM),构建了油井故障智能预警模型;筛选出影响油井故障的14种特征参数进行小波降噪处理,借助自适应矩估计算法对模型进行训练与测试.研究结果表明,模型预测准确率为96.81%,能够为油田提供较为准确的抽油机井故障预警信息.
Intelligent Early Warning of Pumping Machine Well Fault Based on Long Short-term Memory Neural Network
Accurately predicting the fault of rod-pumped wells is of great significance for oilfield production.Aiming at the fault sit-uation of rod-pumped wells in a block of Xinjiang oilfield,the production data of 500 wells were collected,and the 5 main factors cau-sing the fault of pumping wells were identified,such as scale,wax formation,rod corrosion,rod fatigue and rod partial wear.Based on long short-term memory networks(LSTM),the intelligent early-warning model of oil well failure was constructed.By selecting 14 char-acteristic parameters that affect oil well faults for wavelet denoising,the model was trained and tested with the help of adaptive moment estimation algorithm.The findings suggest that the prediction accuracy of the model is 96.81%,which can provide more accurate early warning for rod-pumped well faults.

fault predictionLSTMwavelet denoisingneural networkrod-pumped well

褚浩元、张傲雪、李情霞、黄晓东、李喧喧、赵岩龙

展开 >

中国石油天然气股份有限公司新疆油田分公司工程技术研究院(监理公司),克拉玛依 834000

中国石油大学(北京)克拉玛依校区,克拉玛依 834000

中国石油天然气股份有限公司新疆油田分公司陆梁油田作业区,克拉玛依 834000

故障预测 LSTM 小波降噪 神经网络 抽油机井

国家自然科学基金青年科学基金中国科学院"西部青年学者"项目

520043012021-XBQNXZ-033

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(9)
  • 21