首页|基于蛇算法的主动悬架线性二次型调节器优化设计

基于蛇算法的主动悬架线性二次型调节器优化设计

扫码查看
针对车辆主动悬架系统的线性二次型调节器(linear quadratic regulator,LQR)在设定权重系数矩阵Q和R时具有主观性、效率低的缺点,提出一种基于蛇算法(snake optimizer,SO)优化LQR控制器权重系数矩阵的策略.通过对1/4车辆主动悬架系统的动力学分析,设计了 LQR控制器;将主动悬架与被动悬架各性能指标的积分比值进行加权求和构建了目标函数L;模仿蛇群生活习性的SO算法在搜索空间中求解出了函数L的最小值和LQR控制器的最优权重系数矩阵.为验证该策略的有效性,分别以C级路面、正弦冲击路面为激励,对车身加速度(sprung mass acceleration,SMA)、轮胎动载荷(dynamic tyre load,DTL)、悬架动行程(suspension working space,SWS)3个方面将SO优化LQR控制的主动悬架与被动悬架、传统LQR控制的主动悬架、遗传算法优化LQR控制的主动悬架、粒子群算法优化LQR控制的主动悬架进行了仿真对比.结果表明:S0优化LQR控制的主动悬架可在C级路面上分别对SMA、DTL、SWS的均方根优化达59.47%、37.89%、42.12%;在正弦冲击路面上稳定时间为1.4 s,分别对SMA、DTL、SWS的超调优化达79.21%、59.22%、16.33%,提升了车辆的行驶平顺性、路面附着性和操作安全性.
Optimized Design of Active Suspension LQR Controller Based on Snake Optimizer
Aiming at the shortcomings of subjectivity and low efficiency in setting the weight coefficient matrices Q and R of linear quadratic regulator(LQR)for vehicle active suspension systems,a strategy based on snake optimizer(SO)to optimize the weight coeffi-cient matrices of LQR controller was proposed.The LQR controller was designed by analyzing the dynamics of the 1/4 vehicle active sus-pension system.The objective function L was constructed by weighting the integral ratios of each performance index of active suspension and passive suspension.The minimum value of the function L and the best weight coefficient matrices of the LQR controller in the search space was solved by SO which imitating the living habits of the snake group.In order to verify the effectiveness of this strategy,SO opti-mized LQR-controlled active suspension was simulated and compared with passive suspension,conventional LQR-controlled active suspen-sion,genetic algorithm optimized LQR-controlled active suspension and particle swarm optimization optimized LQR-controlled active sus-pension in terms of sprung mass acceleration(SMA),dynamic tire load(DTL)and suspension working space(SWS),in which C-class road and sinusoidal bump road were used as excitations,respectively.The results show that the active suspension controlled by SO-opti-mized LQR can optimize the root mean square of SMA,DTL and SWS by 59.45%,37.89%and 42.12%on the C-class road,respec-tively.The stability time on the sinusoidal bump road is 1.4 s,and the overshoot optimization of SMA,DTL and SWS is 79.22%,59.22%and 16.33%,respectively,which improves the driving smoothness,road adhesion and operational safety of vehicles.

1/4 vehicle active suspensionsnake optimizerLQR controllerweight coefficient matricparameter optimization

范秋霞、张珂、徐磊、龚岩、常凯乐

展开 >

山西大学自动化与软件学院,太原 030031

1/4车辆主动悬架 蛇算法 LQR控制器 权重系数矩阵 参数优化

国家自然科学基金山西省回国留学人员科研项目

U22A60032020-007

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(9)
  • 27