首页|融合RepVGG的YOLOv5交通标志识别算法

融合RepVGG的YOLOv5交通标志识别算法

扫码查看
实现自动驾驶的安全性需要准确检测交通标志.针对传统方法在交通标志检测方面存在准确度不高的问题,提出一种融合RepVGG模块的改进YOLOv5的交通标志识别算法.首先通过将RepVGG模块替换原算法中的部分CBS模块,增强了特征提取能力.并在特征融合模块引入通道注意力模块(channel block attention module,CBAM),强化检测模型的抗干扰能力.最后,在网络训练过程中,使用高效交并比(efficient-IoU,EIoU)损失函数实现对目标更精确的定位,提高算法的检测精度与迭代速度.实验结果表明,改进后的YOLOv5算法迭代速度更快,在CCTSDB交通标志数据集上,其相较于原YOLOv5算法的准确率、召回率和平均准确率分别提升了 4.99%、3.62%、1.73%,能够更好地应用到实践当中.
YOLOv5 Traffic Sign Recognition Algorithm Combined with RepVGG
In order to achieve the safety of autonomous driving,it is crucial to accurately detect traffic signs.Addressing the issue of low accuracy in traditional methods for traffic sign detection,a modified YOLOv5 algorithm incorporating the RepVGG module for traffic sign recognition was proposed.Firstly,by replacing certain CBS modules in the original algorithm with the RepVGG module,the feature extraction capability was enhanced.Additionally,the channel block attention module(CBAM)attention mechanism was introduced in the feature fusion module to strengthen the detection model's resistance to interference.Finally,during network train-ing,the efficient-IoU(EIoU)loss function was utilized to achieve more precise target positioning,thereby improving the algorithm's detection accuracy and iteration speed.Experimental results demonstrate that the improved YOLOv5 algorithm exhibits faster iteration speed.On the CCTSDB traffic sign dataset,it achieves improvements of4.99%in accuracy,3.62%in recall rate,and 1.73%in average accuracy compared to the original YOLOv5 algorithm,making it more suitable for practical applications.

deep learningYOLOv5RepVGGattention mechanismEIoUtraffic sign recognition

郭华玲、刘佳帅、郑宾、殷云华、赵棣宇

展开 >

中北大学电气与控制工程学院,太原 030051

瞬态冲击技术重点实验室,北京 102202

深度学习 YOLOv5 RepVGG 注意力机制 EIoU 交通标志识别

山西省基础研究计划(自由探索类)

202103021224221

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(9)
  • 18