首页|变工况及小样本情况下滚动轴承故障迁移学习方法综述

变工况及小样本情况下滚动轴承故障迁移学习方法综述

扫码查看
准确预测滚动轴承损伤类型及剩余寿命归于各类旋转机械运行的可靠性和安全性具有重要意义.迁移学习方法通过实验数据使网络模型学习到相关故障类型的知识,训练好的模型可以直接应用到实际工业生产问题当中.突破了传统深度学习方法所需大量有标签数据、模型使用有局限性、通用性差的局限.首先对不同类型的迁移学习方法在滚动轴承故障诊断中的应用进行分析,归纳总结面对不同情况下的迁移学习方法.其次,针对变工况、小样本及一些其他情况下的问题进行总结分析.最后,给出了滚动轴承的迁移学习发展趋势.
Review of Rolling Bearing Migration Learning under Variable Operating Conditions and Small Samples
Accurately predicting the types of damage and remaining lifespan of rolling bearings is of great significance for the reliability and safety of various types of rotating machinery.Transfer learning methods allow network models to learn the knowledge of relevant fault types through experimental data.Trained models can be directly applied to practical industrial production issues,overcoming the limitations of traditional deep learning methods,which require a large amount of labeled data and offer limited model applicability and poor generalization.First,the application of different types of transfer learning methods in the diagnosis of rolling bearing faults was analyzed,summarizing the transfer learning methods for different scenarios.Secondly,issues under varying working conditions,small sample sizes,and some other situations were summarized and analyzed.Finally,the development trends of transfer learning in rolling bearings were presented.

rolling bearingsmall samplevariable working conditiontransfer learning

邬娜、王健、杨建伟、吕百乐

展开 >

北京建筑大学机电与车辆工程学院,北京 100044

城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044

滚动轴承 小样本 变工况 迁移学习

国家自然科学基金国家自然科学基金北京市自然科学基金北京建筑大学青年教师科研能力提升计划

5197503852272385L211007X21055

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(10)
  • 44