首页|基于G-W理论的轮轨三维粗糙表面摩擦生热

基于G-W理论的轮轨三维粗糙表面摩擦生热

扫码查看
为了研究粗糙表面形貌特征对轮轨摩擦副滑动过程中产生的热、温度场和应力场的分布规律及其相互影响,基于G-W模型,将轮轨摩擦副简化为一不同形貌的微凸体粗糙表面与一理想平面,通过数值模拟方法研究了粗糙表面轮轨摩擦过程中热的大小及温度场和应力场的分布规律.结果表明:微凸体之间的相互作用对摩擦生热有影响,随着球冠状微凸体堆叠度的增大,热区分布面积增加,热源减小;微凸体的数量和排布规律对摩擦生热有影响,微凸体横向排布时,摩擦温升随微凸体数量的增加而减小,微凸体纵向排布时,摩擦温升随微凸体数量增加而增大,热区分布向滑动方向后方集中;不同形貌微凸体对对摩擦温升结果也会产生影响,球冠状微凸体粗糙表面摩擦温升总体高于长方体状微凸体摩擦温升.可见,微观层面粗糙表面形貌特征对轮轨摩擦副热源、热区分布、温度场和应力场分布等都会产生影响,为进一步研究轮轨相互作用,保障列车安全运行提供理论依据.
Frictional Heat Generation on Three-dimensional Rough Surfaces of Wheel Tracks Based on G-W Theroy
In order to study the distribution of heat,temperature and stress fields and their mutual influence on the sliding process of the wheel-rail friction substrate,based on the G-W model,the wheel-rail friction substrate was simplified into a rough surface of mi-cro-convex bodies with different shapes and an ideal plane,and combined with the finite element method.The results show these as fol-lows.The interaction between the micro-convex bodies has an impact on the frictional heat generation,with the increase of the stack of spherical crown-shaped micro-convex bodies,the distribution area of the heat zone increases and the heat source decreases.The friction temperature rise decreases with the increase of the number of micro-bumps in the X-direction,and increases with the increase of the number of micro-bumps in the Z-direction,and the distribution of the heat zone is concentrated behind the sliding direction.The fric-tion temperature rise on the rough surface of the spherical crown-shaped micro-convex body is generally higher than that of the rectangu-lar-shaped micro-convex body.The effect of rough surface morphology on the heat source,heat zone distribution,temperature field and stress field distribution of wheel-rail friction is explored at the microscopic level to provide a theoretical basis for further research on wheel-rail interaction and ensure safe train operation.

frictional contactrough surfacenumerical simulationthermo-mechanical couplingwheel tracks

赵博、段志东

展开 >

兰州交通大学土木工程学院,兰州 730000

摩擦接触 粗糙表面 数值模拟 热机耦合 轮轨

国家自然科学基金

51236003

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(11)
  • 20