首页|张拉整体结构的智能化找形研究进展

张拉整体结构的智能化找形研究进展

扫码查看
近年来,"未来的结构体系"张拉整体结构得到学术界的广泛关注.其中,找形是张拉整体结构设计的关键步骤,即确定结构的平衡状态的过程.随着人工智能逐渐应用到各个领域,张拉整体结构的智能找形方法也应运而生,通过使用人工智能技术改进传统的找形方法,以达到简化找形流程的目的.首先介绍人工智能在建筑领域的应用;其次,阐述使用人工智能技术改进张拉整体结构找形方法的研究意义;然后介绍张拉整体结构几种常用的传统的找形方法及其优缺点,再通过调研大量文献,对现在最新的张拉整体结构智能找形方法,特别是优化算法和神经网络方法进行详细介绍和分析;最后,预测并分析总结该领域未来可能的研究方向及相应的发展趋势.
Review of Intelligent Form-finding Methods for Tensegrity Structure
In recent years,the tensegrity structure,known as the"future structural system",has received widespread attention from the academic community.Among them,form-finding is a key step in the design of a tensegrity structure,which is the process of determining the equilibrium state of the structure.With the gradual application of artificial intelligence in various fields,intelligent form-finding methods for tensegrity structures have also emerged.By using artificial intelligence technology to improve traditional form-finding methods,the goal of simplifying the form-finding process is achieved.Firstly,the application of artificial intelligence in the field of architecture was introduced.Secondly,the research significance of using artificial intelligence technology to improve the form-finding method of the tensegrity structure was elaborated.Then,several commonly used traditional form-finding methods for tensegrity structures and their advantages and disadvantages were introduced.Through extensive literature research,the detailed introduction and analysis were conducted on the latest intelligent form-finding methods for tensegrity structures,especially optimization algorithms and neural network methods.Finally,the possible future research directions and corresponding development trends in this field were predicted and analyzed and summarized.

tensegrityartificial intelligenceform-finding methodoptimization algorithmneural network

郭茂祖、李卓璇、李阳、邵首飞

展开 >

北京建筑大学电气与信息工程学院,北京 100044

建筑大数据智能处理方法研究北京市重点实验室(北京建筑大学),北京 100044

张拉整体结构 人工智能 找形方法 优化算法 神经网络

国家自然科学基金国家自然科学基金国家自然科学基金北京市自然科学基金北京建筑大学双塔人才培养计划北京建筑大学青年教师科研能力提升计划

6227103662101022521308094232021JDYC20220818X21083

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(12)
  • 66