首页|基于门控循环单元网络的低阻油层测井流体识别方法

基于门控循环单元网络的低阻油层测井流体识别方法

扫码查看
研究区块低阻油层发育广泛,油层和水层的电阻率相差不大,导致测井流体识别较为困难.为了有效识别低阻油层,采用少数类过采样技术(synthetic minority oversampling technique,Smote)对油水同层,油层等少数类样本进行过采样使数据集均衡;并利用门控循环单元(gated recurrent unit,GRU)网络模型进行低阻油层的流体识别.通过相关性分析确定自然伽马(GR)、深侧向电阻率(RD)、密度(DEN)等8条测井曲线数据作为输入训练模型,应用于中实际资料中,并将GRU与传统RNN和其他3种机器学习算法对比.结果表明:序列数据模型的流体识别效果比传统机器学习模型好,且基于Smote-GRU的流体识别模型的符合率达到89.5%,相对传统循环神经网络(recurrent neural network,RNN)的81.1%,取得了较好的应用效果.通过对照试验还证实了Smote算法提高了分类器对少数类样本的识别率.所提出的方法可为样本不均衡的低阻油层的流体识别提供参考.
Fluid Identification Method for Low Resistivity Reservoir Logging Based on Gated Recurrent Unit Network
The research block is characterized by extensive development of low-resistance oil formations,with little difference in resistivity between the oil and water formations,making logging fluid identification more difficult.In order to effectively identify the oil layer of low resistivity,synthetic minority oversampling technique(Smote)was adopted to oversample a few types of samples such as oil-water homogeneous layer,oil layer,etc.to equalize the dataset,and the gated recurrent unit(GRU)network model was utilized for fluid identification in low resistance reservoirs.Eight logging curve data such as natural gamma-ray(GR),deep resistivity(RD),density(DEN)were identified as input training models through correlation analysis and applied to the medium actual data,and GRU was compared with traditional recurrent neural network(RNN)and other three machine learning algorithms.The results show that the sequential data model is better than the traditional machine learning model for fluid recognition,and interpretation agreement rate of the Smote-GRU-based fluid recognition model reaches 89.5%,compared to 81.1%of traditional RNN,which achieves better application results.It is also confirmed through controlled experiments that the Smote algorithm improves the recognition rate of the classifier for minority class samples.The proposed method can provide a reference for fluid identification in oil layers of low resistivity with sample imbalance.

low resistivity oil layersidentification of fluidunbalanced samplesgated recurrent unit(GRU)

龚宇、刘迪仁

展开 >

长江大学油气资源与勘探技术教育部重点实验室,武汉 430100

低阻油层 流体识别 不均衡样本 门控循环单元(GRU)

国家重点研发计划子课题

2018YFC060330502

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(12)
  • 20