科学技术与工程2024,Vol.24Issue(13) :5427-5435.DOI:10.12404/j.issn.1671-1815.2304084

基于四叉树扇形层值聚类的无人船障碍物检测

Obstacle Detection for Unmanned Ship Based on Quadtree Sector Layer Value Clustering

申燚 赵泽钰 袁明新 刘维
科学技术与工程2024,Vol.24Issue(13) :5427-5435.DOI:10.12404/j.issn.1671-1815.2304084

基于四叉树扇形层值聚类的无人船障碍物检测

Obstacle Detection for Unmanned Ship Based on Quadtree Sector Layer Value Clustering

申燚 1赵泽钰 2袁明新 1刘维3
扫码查看

作者信息

  • 1. 江苏科技大学机械工程学院,镇江 212100;张家港江苏科技大学产业技术研究院,张家港 215600
  • 2. 江苏科技大学机械工程学院,镇江 212100
  • 3. 中科探海(苏州)海洋科技有限责任公司,张家港 215600
  • 折叠

摘要

为了实现无人船自主导航过程中对障碍物的精确检测,提出了一种基于四叉树扇形层值聚类的无人船障碍物检测方法.首先基于四叉树扇形划分进行障碍物点云数据的检索,并剔除扇形象限内不可信数据;然后利用所获得的四叉树层值来求取全局密度距离,进而获得层值阈值,以此来对不规则多线形障碍物特征进行检测;最后通过建立数据点之间的空间拓扑关系来求取参考距离,并以参考距离为基准对障碍物点云数据进行聚类判定,提高聚类分割准确性.多线形障碍物特征识别性能测试及水面无人船障碍物检测实验结果表明,相较于其他密度聚类算法,在正检率、误检率和漏检率性能指标方面,多线形障碍物特征识别性能测试中,所提算法分别平均下降了 9.86%、5.04%、3.10%,水面无人船障碍物检测中,所提算法分别平均下降了 10.50%、6.97%、2.95%.

Abstract

In order to realize the precise detection of obstacles in the process of autonomous navigation of unmanned ships,an obstacle detection method for unmanned ships based on quadtree sector layer value clustering was proposed.Firstly,the obstacle point cloud data was retrieved based on the quadtree sector division,and the untrustworthy data in the sector image limit was eliminated.Secondly,the obtained quadtree layer value was used to calculate the global density distance,and then the layer value threshold was obtained to detect irregular multi-linear obstacle features.Finally,the reference distance was obtained by establishing the spatial topological relationship between data points,and the obstacle point cloud data was clustered and judged based on the reference distance to improve cluster segmentation accuracy.The results of multi-linear obstacle feature recognition performance test and surface unmanned ship obstacle detection experiment show that compared with other density clustering algorithms,in terms of positive detection rate,false detection rate and missed detection performance index,the proposed algorithm decreases by 9.86%,5.04%and 3.10%respectively during multi-linear obstacle feature recognition performance test,and the proposed algorithm decreases by 10.50%,6.97%and 2.95%respectively during surface unmanned ship obstacle detection experiment.In the performance indicators of positive detection rate,false detection rate,and missed detection rate.

关键词

无人船/障碍物检测/激光雷达/四叉树扇形/聚类

Key words

unmanned ship/obstacle detection/LiDAR/quadtree sector/clustering

引用本文复制引用

基金项目

工信部高技术船舶科研项目([2019]360号)

张家港市科技计划(ZKC2206)

张家港市科技计划(ZKYY2253)

出版年

2024
科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
参考文献量17
段落导航相关论文