首页|基于改进鲸鱼优化算法的码垛机器人时间最优轨迹规划

基于改进鲸鱼优化算法的码垛机器人时间最优轨迹规划

扫码查看
码垛机器人在运行轨迹过程中所消耗的时间直接影响到了其工作效率,针对码垛机器人的轨迹规划的时间问题,提出了一种改进的鲸鱼优化算法对时间进行优化.在基本的鲸鱼优化算法基础上,利用混沌映射初始化种群,引入自适应的权重和改进收敛因子,以提高算法的求解精度、收敛速度和全局搜索能力.首先,根据D-H参数法建立机器人的运动学模型;其次,在关节空间中利用3-5-3次多项式插值函数对机器人末端执行器经过的路径点进行规划,然后采用改进的鲸鱼优化算法对时间进行优化.最后通过MATLAB软件进行效果仿真和对比.结果表明,与其他同类的算法相比,改进的鲸鱼优化算法的求解精度更高,收敛速度更快.将该方法与轨迹优化结合,与未采用算法优化的3-5-3多项式轨迹规划所需要的运行时间相比缩短了22.46%,且各个关节轨迹平稳连续,验证了该轨迹规划方法的有效性.
Time Optimal Trajectory Planning of Palletizing Robot Based on Improved Whale Optimization Algorithm
The time consumed by the palletizing robot during its running trajectory directly affects its work efficiency.An improved whale optimization algorithm is proposed to optimize the time for the trajectory planning of the palletizing robot.Based on the standard whale algorithm,chaotic mapping was used to initialize the population,and adaptive weights and improved convergence factors were in-troduced to improve the solution accuracy,convergence speed,and global search capability of the algorithm.Firstly,the kinematic model of the robot was developed based on the D-H parameter method.Secondly,the path points through which the robot end-effector passes were planned in the joint space using a 3-5-3 mixed polynomial interpolation function.Then the time was optimized using the improved whale optimization algorithm.Finally,the effect was simulated and compared in MATLAB.The results show that the im-proved whale algorithm has higher solution accuracy and faster convergence compared with other similar algorithms.Combining the al-gorithm with trajectory optimization,the running time required for 3-5-3 polynomial trajectory planning without the algorithm optimiza-tion is reduced by 22.46%,and the trajectory of each joint is smooth and continuous,which verifies the effectiveness of the trajectory planning method.

trajectory planningimproved whale algorithm3-5-3 mixed polynomialtime optimization

汤兆平、孟鑫、孙剑萍、彭俊

展开 >

华东交通大学机电与车辆工程学院,南昌 330013

华东交通大学交通运输工程学院,南昌 330013

轨迹规划 改进鲸鱼算法 3-5-3次多项式 时间优化

国家自然科学基金国家自然科学基金江西省自然科学基金

519650175226204920202BABL204037

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(14)