首页|基于非洲秃鹫算法优化卷积神经网络的重叠峰解析方法

基于非洲秃鹫算法优化卷积神经网络的重叠峰解析方法

扫码查看
利用光谱仪器检测土壤中重金属时,由于仪器分辨率较低,峰位相近元素的特征峰会产生重叠.光谱重叠峰严重影响定量分析结果的准确性,为了得到准确的重金属含量需要进行光谱重叠峰分解.提出利用非洲秃鹫算法优化卷积神经网络(AVOA-CNN)的重叠峰解析方法.首先,利用高斯函数模型模拟出150个双高斯含噪光谱重叠峰和43个三高斯含噪光谱重叠峰,选择不同小波基函数进行光谱数据去噪,以信噪比和均方根误差(root mean square error,RMSE)为评价指标,最终确定coif 3小波基函数,使用导数法进行光谱重叠峰预处理.然后,使用AVOA-CNN获得卷积神经网络(convolutional neural net-work,CNN)预测结果,解析结果表明:AVOA-CNN成功分解重叠峰且准确率高,双高斯光谱重叠峰和三高斯光谱重叠峰参数(峰强度,峰位,峰宽)的最大相对误差平均值分别为3.15%和5.90%.最后对比麻雀搜索算法优化CNN、CNN与AVOA-CNN,结果显示AVOA-CNN模型预测准确率最高.
Overlapping Peak Resolution Method for Optimizing Convolutional Neural Network Based on the African Vulture Optimization Algorithm
Due to the low resolution of spectroscopic instrument,the characteristics of elements with similar peak position overlap when detecting heavy metals in soil.Spectral overlapping peaks seriously affect the accuracy of quantitative analysis results.In order to obtain accurate heavy metal content,spectral overlapping peaks need to be decomposed.The African vulture algorithm was used to op-timize the overlapping peaks of convolutional neural networks(AVOA-CNN).Firstly,150 double Gaussian overlapping peaks and 43 triple Gaussian overlapping peaks with noise were simulated by Gaussian function model.Different wavelet basis functions were selected for spectral data denoising.With signal-to-noise ratio and root mean square error(RMSE)as evaluation indexes,coif 3 wavelet basis function was finally determined,and derivative method was used to pretreat spectral overlapping peaks.Then,AVOA-CNN was used to obtain the convolutional neural network(CNN)prediction results.The analytic results show that AVOA-CNN can decompose the over-lapping peaks successfully and with high accuracy,and that the parameters of the double and triple Gaussian overlapping peaks(peak intensity,peak location,Peak width)are 3.15%and 5.90%,respectively.Finally,by comparing the sparrow search algorithm to op-timize CNN,CNN and AVOA-CNN,the results show that the AVOA-CNN model has the highest prediction accuracy.

spectral instrumentoverlapping peak analysisAfrican vulture optimization algorithm(A VO A)convolutional neural network(CNN)

牛传乐、李芳、任顺、陆安祥

展开 >

三峡大学计算机与信息学院,宜昌 443002

北京市农林科学院质量标准与检测技术研究所,北京 100097

光谱仪器 重叠峰解析 非洲秃鹫算法(AVOA) 卷积神经网络(CNN)

现代农业(桃)产业技术体系

CARS-30-2-06

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(16)
  • 9