首页|基于鲸鱼优化混合神经网络的滑坡位移预测

基于鲸鱼优化混合神经网络的滑坡位移预测

扫码查看
针对静态机器学习模型难以有效反映滑坡的动态演化特性,且存在时序过长时历史数据遗忘导致位移预测结果不稳定的问题.提出一种基于鲸鱼优化卷积神经网络(convolutional neural networks,CNN)和双向门控循环神经网络(bidirection-al gated recurrent neural network,BiGRU)的滑坡位移动态预测方法.首先对滑坡影响因子进行特征筛选,构建数据集,建立CNN-BiGRU网络模型,使用鲸鱼优化算法(whale optimization algorithm,WO A)对模型进行超参数寻优,使用CNN网络模型从滑坡数据中提取潜在的特征向量,将特征向量以时间序列的形式输入BiGRU模型中,利用其处理时间序列数据的优势,完成滑坡位移预测.结果表明:所提出模型得到的滑坡位移预测精度较高,与未优化的CNN-BiGRU相比均方根误差(root mean square error,RMSE)下降了0.030 5 mm.
Landslide Displacement Prediction Based on Whale Optimization Hybrid Neural Network
For the static machine learning model is difficult to reflect the dynamic evolution characteristics of landslide effectively,and there is the problem that the displacement prediction results are unstable due to the forgetfulness of historical data when the time se-ries is too long.A dynamic landslide displacement prediction method based on whale-optimized convolutional neural networks(CNN)and bidirectional gated recurrent neural network(BiGRU)was proposed.Firstly,the landslide impact factors were filtered for features and the data set was constructed,the CNN-BiGRU network model was established and the hyperparameter search was performed using the whale optimization algorithm(WOA),the potential feature vectors were extracted from the landslide data using the CNN network model,and the feature vectors were input to the BiGRU model in the form of time series,and used its advantage of processing time se-ries data to complete landslide displacement prediction.The results show that the landslide displacement prediction accuracy obtained by the proposed model is high,and the root mean square error(RMSE)decreases by 0.030 5 mm compared with the unoptimized CNN-BiGRU.

landslide displacement predictionwhale optimization algorithm(WOA)convolutional neural networks(CNN)bidi-rectional gated recurrent neural network(BiGRU)

罗超雷、徐哈宁、肖慧、范凌峰、胡佳超、游丝露

展开 >

江西省防震减灾与工程地质灾害探测工程研究中心(东华理工大学),南昌 330013

东华理工大学地球物理与测控技术学院,南昌 330013

滑坡位移预测 鲸鱼优化算法(WOA) 卷积神经网络(CNN) 双向门控循环神经网络(BiGRU)

江西省防震减灾与工程地质灾害探测工程研究中心开放基金江西省自然科学基金江西省教育厅科学技术研究项目

SDGD20200520212BAB203004GJJ200727

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(16)