首页|基于VMD-LSTM-IPSO-GRU的电力负荷预测

基于VMD-LSTM-IPSO-GRU的电力负荷预测

扫码查看
为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)和门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型.首先,使用相关性分析确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,进而合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果.仿真结果表明:相对于其他模型,所提混合模型可有效的提取模态特征,具有更高的预测精度.
Short-term Load Forecasting Based on VMD-LSTM-IPSO-GRU
To explore the hidden information in power load data and improve the accuracy of short-term load forecasting,a hybrid prediction model based on variational mode decomposition(VMD),long-term and short-term memory network(LSTM),improved par-ticle swarm optimization(IPSO)algorithm and gated recurrent unit neural network(GRU)was proposed with consideration of strong non-linearity and non-stationarity in power load.First,correlation analysis was employed to determine input factors.The VMD algo-rithm combined with sample entropy was employed to decompose the load data into a series of intrinsic mode function(IMF)and residual components,which then allowed for the rational determination of the decomposition levels and penalty factors.Then,these quantities were divided into low-frequency and high-frequency components based on the zero-crossing rate.The low-frequency compo-nents were forecasted using an LSTM network,while the high-frequency components were predicted with an IPSO-GRU network.Final-ly,the predicted results were reconstructed to obtain the final result of power load.Simulation results show that the proposed hybrid prediction model can effectively extract modal features and possesses higher predictive accuracy compared with alternative models.

short-term load forecastingvariational mode decomposition(VMD)long and short term neural networks(LSTM)ga-ted circulation unit(GRU)improve particle swarm optimization(IPSO)

肖威、方娜、邓心

展开 >

湖北工业大学电气与电子工程学院,太阳能高效利用及储能运行控制湖北省重点实验室,武汉 430068

湖北工业大学电气与电子工程学院,新能源及电网装备安全监测湖北省工程研究中心,武汉 430068

短期负荷预测 变分模态分解(VMD) 长短时记忆神经网络(LSTM) 门控循环单元(GRU) 改进的粒子群优化算法(IPSO)

国家自然科学基金青年科学基金湖北省重点研发计划

518090972021BAA193

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(16)