首页|基于随机森林和支持向量机的云南省土地利用分类

基于随机森林和支持向量机的云南省土地利用分类

扫码查看
针对基于遥感进行大尺度空间上土地利用类型分类研究的精确性问题,对比提出适用于多样性高原山地地貌大尺度下精确高效的土地利用分类提取方法和土地分类模型.基于2019-2021年云南省Sentinel-2卫星影像数据,分别采用随机森林(random forest,RF)和支持向量机(support vector machines,SVM)算法对云南省土地利用进行分类,通过目视解译随机抽样选取1 525个样本点进行精度验证.结果表明:应用RF和SVM分类算法对云南省土地利用分类精度均达80%以上,2019-2021年云南省土地利用中耕地主要呈现先增加后减少趋势;采用RF与SVM总体精度和Kappa系数均值能够更加有效进行土地利用分类比较分析;研究区内RF算法识别地物信息的准确度高于SVM,更适合云南省高原山地土地利用分类研究.
Land Use Classification in Yunnan Province Based on Random Forest and Support Vector Machine
In addressing the issue of accuracy in large-scale spatial land use type classification based on remote sensing,precise and efficient land use classification extraction methods and land classification models suitable for diverse high-altitude mountainous terrains were compared and proposed.The random forest(RF)and support vector machine(SVM)algorithms were employed to classify land use in Yunnan Province.Accuracy validation was carried out by visually interpreting and randomly sampling 1 525 sample points.The results indicate that the application of RF and SVM classification algorithms both yield land use classification accuracy of over 80%in Yunnan Province.Cultivated land in Yunnan Province shows a trend of initial increase and subsequent decrease from 2019 to 2021.Using RF and SVM,overall accuracy and Kappa coefficients are effective for comparative analysis of land use classification.The RF algorithm demonstrates higher accuracy in identifying land features within the study area compared to SVM,making it more suitable for land use classification research in Yunnan Province's high-altitude mountainous terrain.

land userandom forestsupport vector machinesYunnan Province

潘娇、李超、彭文忆、李影芝、李文峰

展开 >

云南省作物智慧生产国际联合实验室,昆明 650201

云南省教育厅作物模拟与智能调控重点实验室,昆明 650201

云南省气象台,昆明 650021

德宏州经济作物技术推广站,德宏 678499

展开 >

土地利用 随机森林 支持向量机 云南省

国家自然科学基金云南省重大科技专项

32160420202202AE090021

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(17)
  • 35