首页|融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法

融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法

扫码查看
在电力系统巡检过程中,人工巡检方式难度较高,且存在安全隐患,搭载智能算法的无人机平台代替人工进行绝缘子检测的方法前景较好.针对绝缘子缺陷目标检测过程中存在的速度较慢、准确度较低等不足,提出了融合注意力机制的改进型YOLOv5绝缘子缺陷故障检测方法,该方法在YOLOv5s网络中融入压缩与激活(squeeze-and-excitation,SE)注意力模块和卷积块的注意力模块(convolutional block attention module,CBAM),并且将SE注意力模块与网络结构当中的C3模块结合,强化了网络的特征提取能力.通过相关的图像处理方法完成了自建绝缘子数据集的构建,采用了 K-means++聚类算法构建自建数据集的先验框,并引入了 Mosaic-9数据增强策略,有效解决了训练数据不足难以保证训练效果的问题.实验验证表明,改进后的检测方法,在不影响检测时间的前提下,绝缘子检测的准确度提升了 9.7%,对电力系统巡检方法具有一定参考意义.
Improved YOLOv5 Insulator Defect Fault Detection Method Integrating Attention Mechanism
In the process of power system inspection,manual inspection is difficult and poses safety hazards.The unmanned aerial vehicle platform equipped with intelligent algorithms has a promising prospect of replacing manual insulator detection methods.In response to the shortcomings of slow speed and low accuracy in the detection process of insulator defect targets,an improved YOLOv5 insulator defect fault detection method integrating attention mechanism was proposed.This method integrates the SE attention module and CBAM attention module in the YOLOv5s network,and combines the SE attention module with the C3 module in the network structure to enhance the network's feature extraction ability.The construction of the self-built insulator dataset was completed through relevant image processing methods.The K-means++clustering algorithm was used to construct the prior frame of the self-built dataset,and the Mosaic-9 data augmentation strategy was introduced,effectively solving the problem of insufficient training data and difficulty in ensuring training effectiveness.Experimental verification shows that the improved detection method improves the accuracy of insulator detection by 9.7%without affecting the detection time,which has certain reference significance for power system inspection methods.

insulatordefect detectionattention mechanismK-means++

孙新娟、杨天宇

展开 >

华北水利水电大学电子工程学院,郑州 450046

绝缘子 缺陷检测 注意力机制 K-means++

国家自然科学基金

41871302

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(17)
  • 23