首页|轻量化YOLOv7-tiny的遥感图像小目标检测

轻量化YOLOv7-tiny的遥感图像小目标检测

扫码查看
针对遥感图像小目标众多、目标检测器参数量大和检测效率低等问题,提出了一种改进的YOLOv7-tiny的轻量级遥感图像小目标检测模型.首先,针对原始模型中跨阶段局部空间金字塔池化网络复杂的碎片化操作,提出轻量级的空间金字塔池化结构来减少多余的卷积算子操作;其次,针对颈部网络冗余的模块化连接方式和小目标容易在深层特征丢失空间信息的问题,提出深层语义信息引导的单尺度预测头方法来进行小目标位置信息强化,并进一步减少颈部网络和头部网络的计算成本.在遥感图像数据集上展开实验,结果表明,改进后的模型比原始模型参数量降低49.6%,计算复杂度降低28.5%,推理速度提高73.1%,并优于现阶段其他主流轻量级目标检测器.
Lightweight YOLOv7-tiny for Remote Sensing Image Small Target Detection
Aiming at the problems of numerous small targets in remote sensing images,large number of target detector parameters and low detection efficiency,an improved lightweight remote sensing image small target detection model of YOLOv7-tiny was proposed.First,to address the complex fragmentation operations of the cross-stage local spatial pyramidal pooling network in the original model,a lightweight spatial pyramidal pooling structure was proposed to reduce the redundant convolution operator operations.Second,to ad-dress the problems of redundant modular connectivity of the neck network and the easy loss of spatial information of small targets in deep features,a single-scale prediction head method guided by deep semantic information was proposed to reduce the neck network and head network to reduce the computational cost of the neck network and head network.Experiments were carried out on remote sensing image datasets,and the results show that the improved model reduces the number of parameters by 49.6%,computational complexity by 28.5%,and inference speed by 73.1%compared with the original model,and outperforms other mainstream lightweight target de-tectors at this stage.

object detectionYOLOv7-tinylightweightremote sensing imagessemantic information guidance

桑雨、李立权、李铁

展开 >

辽宁工程技术大学电子与信息工程学院,葫芦岛 125105

目标检测 YOLOv7-tiny 轻量化 遥感图像 语义信息引导

国家自然科学基金辽宁省教育厅科学研究基金辽宁省教育厅科学研究基金辽宁工程技术大学校引进人才基金

61602226LJKQZ2021152LJ2020JCL00718-1021

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(18)