首页|融合Word2Vec词嵌入的多核卷积神经网络音乐歌词多情感分类方法

融合Word2Vec词嵌入的多核卷积神经网络音乐歌词多情感分类方法

扫码查看
目前,音乐歌词情感分类大多以二标签极性情感为主,多情感标签分类较少,并且对于情感性不确定的歌词而言,得到的分类性能不高.为了解决多情感标签研究分类的不足,以及提高分类准确性,提出一种利用Word2Vec词嵌入技术,并使用多核卷积神经网络作为分类器的音乐歌词多情感分类方法.该方法首先结合音乐歌词文本,进行数据预处理和可视化分析;其次利用Word2Vec词嵌入提取歌词局部特征,构建特征情感向量,挖掘歌词中情感信息,将歌词转化为更利于分类器模型输入的词向量;最后在分类器中,选用卷积神经网络模型,并在此基础上采用不同高度卷积核的方式构建新模型以此得到多情感分类.结果表明:音乐歌词多情感分类的结果达到94.26%,与传统CNN相比,分类精确率提高了 6.86%,取得了良好性能.
Multi-sentiment Classification of Music Lyrics by Incorporating Word2Vec Word Embedding Multi-core Convolutional Neural Networks
Currently,most of the music lyrics emotion classification is based on two-label polar emotions,while multi-emotion label classification is rare,and the classification performance obtained is not high for lyrics with uncertain emotionality.To address the limi-tations of multi-sentiment labeling research in classification and to enhance classification accuracy,a multi-sentiment classification method was proposed for music lyrics using Word2Vec word embedding technology and a multi-core convolutional neural network as the classifier.The method initially integrated music lyrics text for data preprocessing and visualization analysis.Secondly,Word2Vec word embedding was utilized to extract local features of the lyrics,construct feature sentiment vectors,mine sentiment information within the lyrics,and converted the lyrics into word vectors that were more suitable for input into the classifier model.Finally,a convolutional neural network model was selected as the classifier,and upon this foundation,a novel model was constructed with various heights of convolutional kernels to achieve multi-emotion classification.The experimental results show that the result of music lyrics multi-senti-ment classification reaches 94.26%,which improves the classification accuracy by 6.86%compared with the traditional CNN and achieves good performance.

natural language processingsentiment classificationconvolutional neural networkword embeddingtext classifica-tionmusic lyrics

张昱、冯亚寒、丁千惠

展开 >

北京建筑大学电气与信息工程学院,北京 100044

北京建筑大学建筑大数据智能处理方法研究北京市重点实验室,北京 100044

中国矿业大学(北京)深部岩土力学与地下工程国家重点实验室,北京 100083

自然语言处理 情感分类 卷积神经网络 词嵌入 文本分类 音乐歌词

北京市深地空间科学与工程研究院基金北京市教育部产学合作协同育人项目北京市北京建筑大学研究生教育教学质量提升项目

XD2021021221001576090901J2022003

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(20)
  • 14