首页|基于一维多尺度神经网络和库普曼池化的滚动轴承故障诊断方法

基于一维多尺度神经网络和库普曼池化的滚动轴承故障诊断方法

扫码查看
滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化.卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network,1D-CNN)在处理一维数据的优势,利用多尺度思想在同一层同时使用不同大小的窗口提取信号特征,根据时间维度信息对异常检测方法的影响,将1D-CNN的池化层与Koopman模型结合,得到高阶动态特征;最后将所得到的故障特征输入全连接层中进行故障诊断.为验证模型优势,对所提出的初始模型和两种改进模型在相同工况下进行对比,同时与支持向量机(support vector machine,SVM)和BP神经网络(back propagation neural network,BPNN)等算法进行对比分析.结果表明:所提模型的识别效果较好,滚动轴承故障准确率可以达到99.99%.
Rolling Bearing Fault Diagnosis Method Based on One-dimensional Multiscale Neural Network and Koopman Pooling
Rolling bearings,as the core components of mechanical operation,their failures can lead to the deterioration of rotating machinery's operating conditions.Convolutional networks,as a method for diagnosing rolling bearing faults,address their fixed window limitations by leveraging the advantages of 1D convolutional neural network(1D-CNN)in processing one-dimensional data.Utilizing the multiscale concept,different-sized windows were used simultaneously at the same layer to extract signal features.Considering the impact of time dimension information on anomaly detection methods,the pooling layer of the neural network was combined with the Koopman model to obtain higher-order dynamic features.Finally,the fault features obtained were inputted into a fully connected layer for fault diagnosis.To verify the advantages of the model,the proposed initial model and two improved models were compared under the same working conditions,alongside a comparative analysis with algorithms such as support vector machines(SVM)and back propagation neural network(BPNN).The results show that the proposed model has a better recognition effect,with the accuracy of rolling bearing fault reaching 99.99%.

rolling bearingfault diagnosis1D convolutional neural network(1D-CNN)Koopman pooling

孙祯、周素霞

展开 >

北京建筑大学机电与车辆工程学院,北京 100044

北京建筑大学城市轨道交通车辆服役性能保障北京市重点实验室,北京 100044

滚动轴承 故障诊断 一维多尺度卷积网络(1D-CNN) Koopman池化

北京市自然科学基金

L211007

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(24)