首页|基于DeeplabV3+网络的轻量化语义分割算法

基于DeeplabV3+网络的轻量化语义分割算法

扫码查看
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+.Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution,DSC)与空洞空间金字塔(atrous spatia pyramid poo-ling,ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution,DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化.改进模型在PASCAL VOC 2012数据集上进行测试.实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%.改进模型的网络参数量(pa-rams)减少了3.86 ×106,浮点计算量(GFLOPs)减少了117.98 G.因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果.
Lightweight Semantic Segmentation Algorithm Based on DeeplabV3+Network
A lightweight semantic segmentation model Faster DeeplabV3+based on DeeplabV3+network was improved to address the issues of large parameter count,slow computation speed,and low efficiency in traditional semantic segmentation models.The Faster DeeplabV3+model used lightweight MobilenetV2 instead of Xception as the backbone feature extraction network,significantly reducing the number of parameters and improving computational speed.Using the combination of deep separable convolution(DSC)and air space pyramid expansion convolution(ASPP),a new depth separable dilated convolution(DSD-Conv)was developed,namely,the depth separable empty space pyramid module(DP-ASPP),which expanded the receptive field while reducing the original convolution parameters and facilitating faster operation.In order to enhance the sensitivity and accuracy of the network in extracting feature information from different dimensions,a dual attention mechanism module was added for processing low-level and high-level feature maps generated in the coding region.Two loss functions,cross entropy and Dice Loss,were integrated to provide more comprehensive and diverse optimization for the model.The improved model was tested on the PASCAL VOC 2012 dataset.The experimental results show that the average intersection to union ratio increases from 76.57%to 79.07%,and the segmentation accuracy increases from 91.2%to 94.3%.The network parameter count(parameters)of the improved model is reduced by 3.86× 106,and the floating-point computational load(GFLOPs)is decreased by 117.98 G.The proposed algorithm significantly reduces parameter count and improves computational speed,while also optimizing the segmentation effect.

semantic segmentationDeeplabV3+lightweightdeep separable convolution(DSC)empty space pyramid pooling(ASPP)

张秀再、张昊、杨昌军

展开 >

南京信息工程大学电子与信息工程学院,南京 210044

南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京 210044

中国气象局中国遥感卫星辐射测量和定标重点开放实验室,国家卫星气象中心,北京 100081

语义分割 DeeplabV3+ 轻量化 深度可分离卷积(DSC) 空洞空间金字塔池化(ASPP)

国家社会科学基金一般项目

22BZZ080

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(24)