首页|基于DSS-UNet算法的网格化风速预测

基于DSS-UNet算法的网格化风速预测

扫码查看
风速预报对于航空领域的决策和规划具有重要指导意义.传统的气象栅格风速预测依赖于数值模式预报技术,基于复杂的数理方程建立的数值模式预报需要花费高昂的算力.针对传统技术的硬件要求高、现有的基于深度学习算法的数值模式预报算法效果差的问题,提出了一种多尺度时空U结构网络(different scale spacetime UNet,DSS-UNet)对多气压等级未来两天的格点风速进行预测.该算法的多尺度通道和空间模块(mult-scale channel and sparional module,MSCSM)模块充分考虑了输入特征的通道及空间信息;提出了一个由时序自适应模块(temporal adaptive module,TAM)结构改进得到的多尺度时间自适应模块(mult-scale temporal adaptive module,MSTAM)模块来捕获局部分支及全局分支的时间信息.在公开数据集(ERA5再分析数据)进行实验,并与其他算法进行对比实验,实验结果表明,在实验区域内,DSS-UNet的评估指标优于对比的时空预测算法.这对于提高气象预报的准确性以及应对天气变化带来的挑战具有一定意义.
Grid Wind Speed Prediction Based on DSS-UNet Algorithm
Wind speed forecast has important guiding significance for decision-making and planning in the aviation field.Traditional grid wind speed prediction relies on numerical weather prediction technology.Numerical weather prediction,based on complex mathematical equations,requires high computing power.Given the high hardware requirements of traditional technology and the poor performance of existing numerical weather prediction based on deep learning algorithms,a DSS-UNet algorithm was proposed to predict the next two days of grid wind speed at multiple pressure levels.The MSCSM module of the algorithm fully considers the channel and spatial information of input features.The MSTAM module,improved from the TAM module,was proposed to capture the time information of local and global branches.Experiments were carried out on the open dataset and compared with other algorithms.The experimental results show that the evaluation index of DSS-UNet is better than the compared spatiotemporal prediction algorithms in the experimental area.This algorithm has certain significance for improving the accuracy of weather forecasts and coping with the challenges brought by weather changes.

deep learningattention mechanismwind speed predictionmeteorological grid

刘思凡、秦华旺

展开 >

南京信息工程大学电子与信息工程学院,南京 210044

深度学习 注意力机制 风速预测 气象栅格

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(26)