首页|基于PSO-CNN算法的齿轮故障诊断方法

基于PSO-CNN算法的齿轮故障诊断方法

扫码查看
齿轮故障振动信号具有非线性和非平稳性的特性,以及样本不均衡问题和运行工况复杂多变的情况,造成齿轮故障特征诊断的准确度和稳定性偏低,因此,通过研究提高样本集质量和改进深度学习模型的综合方法,以此来提高模型的诊断精度.首先采用变分模态分解(variational mode decomposition,VMD)对信号进行处理,提取每个本征模态函数(intrinsic mode function,IMF)分量的能量熵无量纲指标作为样本集,克服样本不均衡和工况变化带来的不利影响.然后,利用粒子群优化(particle swarm optimization,PSO)算法自主优化卷积神经网络(convolutional neural network,CNN)的学习率(PSO-CNN),降低模型出现过拟合问题的可能性,并利用Inception模块的概念,设计一个多分支全局平均池化网络用于特征融合,进一步提高模型的故障诊断精度.最后,通过试验数据对所提方法进行了验证,结果表明,本文方法的故障诊断准确率可达0.99,并于其他方法进行对比,凸显该方法的有效性和稳定性.
Gear Fault Diagnosis Method Based on PSO-CNN Algorithm
The enhancement of the sample set quality and the improvement of the deep learning model are aimed to be achieved through a comprehensive approach,designed to increase diagnostic accuracy.This is necessitated by the challenges posed by gear fault vibration signals,characterized by nonlinearity,non-stationarity,sample imbalance,and variable operating conditions.The signals were processed initially using VMD(variational mode decomposition),whereby energy entropy dimensionless indicators of each IMF(intrinsic mode function)component were extracted as the sample set.This approach is intended to counteract the detrimental effects of sample imbalance and operational variations.Subsequently,the learning rate of CNN(convolutional neural network)was optimized autonomously using PSO(particle swarm optimization)algorithm,aiming to minimize the risk of model overfitting.Additionally,a multi-branch global average pooling network,incorporating the concept of Inception modules,was designed for the purpose of feature fusion,thereby seeking to enhance the fault diagnostic accuracy of the model.The effectiveness of the method is validated through experimental data,demonstrating that fault diagnosis accuracy of up to 0.99 is achievable with the proposed method.Compared with other methods,the effectiveness and stability of this approach are highlighted.

energy entropy of VMDPSO-CNNlearning ratemulti-branch global average pooled network

谷娜、吴胜利、邢文婷

展开 >

重庆交通大学交通运输学院,重庆 400074

重庆工商大学管理科学与工程学院,重庆 400067

VMD能量熵 PSO-CNN 学习率 多分支全局平均池化网络

国家自然科学基金国家社会科学基金重庆市研究生联合培养基地建设项目重庆工商大学高层次人才科研启动项目

5170505223BGL220JDLHPYJD2020028950317005

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(26)