首页|基于内置式声发射装置的金刚滚轮磨损在线监测方法

基于内置式声发射装置的金刚滚轮磨损在线监测方法

扫码查看
为解决金刚滚轮修整磨损情况难以准确在线判断难题.设计开发了一套内置式声发射在线监测金刚滚轮磨损装置.基于Shannon信息熵理论与小波包模型,提出了一种对金刚滚轮修整声发射信号处理方法.该方法计算每一层小波包系数的信息熵,并根据信息熵变化规律可确定小波包最佳分解层数.然后,利用主成分分析对该小波包分解特征参数进行降维,提取出最能表征金刚滚轮磨损的特征参数.最后,基于该特征参数建立粒子群优化算法支持向量机(particle swarm optimi-zation-support vector machin,PSO-SVM),对金刚滚轮磨损状态进行实验监测研究.结果表明PSO-SVM模型分类精度最高,平均正确率高达95.24%以上,并通过大量实验验证了 PSO-SVM的有效性.
Online Monitoring Method of Diamond Roller Wear Based on Built in Acoustic Emission Device
In order to solve the diamond roller dressing wear situation is difficult to accurately online judgment problem.A set of built-in acoustic emission on-line monitoring diamond roller wear device was designed and developed.Based on Shannon information entropy theory and wavelet packet model,a method of acoustic emission signal processing for diamond wheel dressing was proposed.The method enabled the information entropy of wavelet packet coefficients to be calculated for each layer,and the optimal number of wavelet packet decomposition layers could be determined according to the variation rule of information entropy.Then,the wavelet packet decomposition feature parameter was downsized using principal component analysis,and the feature parameter that best characterizes the wear of diamond rollers was extracted.Finally,PSO-SVM(particle swarm optimization algorithm support vector machine)based on this feature parameter was established.The wear state of diamond rollers was monitored experimentally.The results show that the PSO-SVM model has the highest classification accuracy,with an average correct rate of more than 95.24%,and the effectiveness of PSO-SVM is verified by a large number of experiments.

diamond rollerinformation entropyavelet packet decompositionPSO-SVM

于光宁、史慧楠、迟杰、迟玉伦

展开 >

中国航发哈尔滨轴承有限公司,哈尔滨 150027

上海理工大学机械工程学院,上海 200093

金刚滚轮 信息熵 小波包分解 PSO-SVM

国家科技重大专项

J2019-Ⅳ-0004-0071

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(26)