首页|多源域联合对齐的自适应故障诊断方法

多源域联合对齐的自适应故障诊断方法

扫码查看
单源域自适应故障诊断方法常出现域不匹配的问题,导致负迁移和泛化能力不足.同时,实际工业中往往包含多个源域数据,且目标域中包含的信息在不同源域中存在较大差异.因此,提出一种多源域联合对齐的自适应故障诊断方法.首先,面对多传感信号,采用平均拼接融合方法,形成融合信号;其次,提出嵌入可迁移残差模块的多尺度特征提取模块,既保证多尺度的特征提取,又增强模型的非额外参数化可迁移性.最后,结合自适应超参数和多核最大均值差异作为正则项减少网络层中数据分布的差异.将可迁移残差模块作为结构优化策略和多核最大均值差异作为统计变换策略联合使用,称为联合对齐.实验结果表明:整个模型无需引入多余的超参数,即可实现多源域的高准确率故障诊断需求.
Fault Diagnosis Method Based on Joint Alignment of Multiple Source Domain Adaptation
Single-source domain adaptation fault diagnosis methods often suffer from domain mismatch problems,resulting in negative transfer and insufficient generalization capabilities.At the same time,actual industry often contains data from multiple source domains,and the information contained in the target domain varies greatly in different source domains.Therefore,the fault diagnosis method based on joint alignment of multiple source domain adaptation was proposed.First,in the face of multi-sensor signals,the average splicing fusion method was used to form the fusion signal.Second,the multi-scale feature extraction module with transferable residual module was proposed to ensure multi-scale feature extraction and enhance the non-extra parameterized transferability of the model.Finally,adaptive hyperparameters and multi-kernel maximum mean discrepancies were combined as constraints to eliminate the differences in data distribution in the network layer.The transferable residual module as a structural optimization strategy and multi-kernel maximum mean discrepancies as a statistical transformation strategy were jointly applied,which was called joint alignment.Experimental results show that the entire model can achieve high-accuracy fault diagnosis requirements in multi-source domains without introducing redundant hyperparameters.

fault diagnosismultiple source domainsmulti-scalejoint alignmentdomain adaptation

聂晓音、韩秦、吴沛澜、曹允山、谢刚

展开 >

太原科技大学电子信息工程学院,太原 030024

先进控制与装备智能化山西省重点实验室,太原 030024

大秦铁路股份有限公司,侯马 043000

故障诊断 多源域 多尺度 联合对齐 域自适应

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(28)