首页|基于地质力学数据的井下裂缝宽度智能预测方法研究与应用

基于地质力学数据的井下裂缝宽度智能预测方法研究与应用

扫码查看
准确预测井下裂缝宽度对于选择合适的堵漏工艺和材料至关重要,但现有基于物理机理的裂缝宽度解析解模型存在显著的局限性.分别基于卷积神经网络(convolutional neural network,CNN)、长短期记忆(long short-term memory,LSTM)神经网络、CNN-LSTM融合神经网络等算法,结合地质力学数据,构建了多个井下裂缝宽度预测模型.结果表明,CNN-LSTM模型在测试集上的预测效果最佳,预测稳定性最好,相关系数R2为0.967,均方误差(mean squared error,MSE)为0.000 5.同时,有效预测了B-2井的150个样本点,预测准确率高达90%以上.利用CNN-LSTM模型预测了渤海油田B-5井的裂缝宽度,并优化了堵漏剂配方,成功提高了钻井现场堵漏成功率.这一应用表明,井下裂缝宽度智能预测模型能为工程师提供可靠的决策支持,确保堵漏工艺的有效性,从而提高现场一次堵漏成功率.
Application of Intelligent Prediction Method for Underground Fracture Width Based on Geomechanical Data
Accurately predicting the underground fracture width is crucial for selecting suitable plugging techniques and materials.However,existing analytical models based on physical mechanisms for fracture width have significant limitations.Multiple underground fracture width prediction models were constructed using convolutional neural network(CNN),long short-term memory(LSTM)neural network,and CNN-LSTM fusion neural network algorithms,combined with geomechanical data.The results show that the CNN-LSTM model has the best predictive performance on the test set,the correlation coefficient R2 is 0.967,and the mean squared error(MSE)is 0.000 5.Moreover,150 sample points from well B-2 with an accuracy rate of over 90%are successfully predicted.By utilizing the CNN-LSTM model to predict fracture width and optimize the plugging agent formulation,the success rate of on-site plugging in well B-5 in the Bohai oilfield is significantly improved.This application demonstrates that fracture width prediction based on intelligent models can provide reliable decision support for engineers,ensuring the effectiveness of plugging techniques and enhancing the success rate of initial plugging on-site.

fracture widthphysical mechanismsCNN-LSTMgeomechanical data

蔡文军、丁建琦、李中、殷志明、周定照

展开 >

中海油研究总院有限责任公司,北京 100028

中国石油大学(北京)石油工程学院,北京 102200

裂缝宽度 物理机理 CNN-LSTM 地质力学数据

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(33)