首页|考虑多尺度输入及优化CNN-BiGRU的短期负荷预测

考虑多尺度输入及优化CNN-BiGRU的短期负荷预测

扫码查看
短期的负荷预测是市场规划的重要前提且能有效保障电力系统的安全稳定运行,由于电力负荷随机性强、波动性大等问题导致预测精度难以提高,针对于此,提出了一种基于CEEMDAN-PE-SSA-CNN-BiGRU的短期电力负荷预测方法.首先,对于复杂多变的电力负荷数据采用完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)为子序列,计算其子序列的排列熵(permutation entropy,PE),将熵值相近的子序列重构得到新序列,降低了原始数据非平稳序列对预测精度的影响并优化计算量;其次,对重组序列进行特性分析,根据重组序列不同周期进而选取多尺度输入并搭建CNN-BiGRU预测模型.最后,选用麻雀搜索算法(sparrow search algorithm,SSA)来优化模型超参数通过汇总所有预测序列从而得到最终预测数据.使用本文模型以西班牙用电负荷为实例并与单一模型和组合模型进行对比,实验表明该模型预测效果更佳.
Considering Multi-scale Inputs and Optimizing the Short-term Load Prediction of CNN-BiGRU
Short-term load forecasting is an important prerequisite for market planning and can effectively ensure the safe and stable operation of the power system.In order to solve the problems of strong randomness and large volatility of power load,a short-term power load prediction method based on CEEMDAN-PE-SSA-CNN-BiGRU was proposed.Firstly,for the complex and changeable power load data,CEEMDAN(fully adaptive noise set empirical mode decomposition)was used as a subsequence,PE(permutation entropy)of the subsequences was calculated,and the subsequences with similar entropy values are reconstructed to obtain a new sequence,which reduces the influence of the non-stationary series of the original data on the prediction accuracy and optimizes the computational cost.Secondly,the characteristics of the recombinant sequence were analyzed,and the multi-scale input was used to extract the data features by using the CNN(convolutional neural network),which was input to BIGRU(bidirectional gated recurrent unit network)for training,and SSA(sparrow search algorithm)was used to optimize the hyperparameters.Finally,the normalized new series data was input into the prediction model to obtain the prediction sequence,and the final prediction data was obtained by summarizing all the prediction sequences.Using the model proposed,taking the Spanish electricity load as an example,compared with the single model and the combined model,the experimental results show that the model has a better prediction effect.

load forecastingfully adaptive noise ensemble empirical mode decompositionPE(permutation entropy)SSA(sparrow search algorithm)convolutional neural networksBi-directional gated recirculating unit

张宇航、冉启武、石卓见、熊芮

展开 >

陕西理工大学电气工程学院,汉中 723000

负荷预测 完全自适应噪声集合经验模态分解 排列熵 麻雀搜索算法 卷积神经网络 双向门控循环单元

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(34)