科学技术与工程2024,Vol.24Issue(34) :14699-14708.DOI:10.12404/j.issn.1671-1815.2400971

多信号变压器局部放电特征提取及故障识别

Feature Extraction and Fault Identification of Partial Discharge in Multi-signal Transformer

安琪 杨攀烁 安国庆 韩晓慧 杨晓锐 李沂隆 刘东升 何平 王苏 高伟超
科学技术与工程2024,Vol.24Issue(34) :14699-14708.DOI:10.12404/j.issn.1671-1815.2400971

多信号变压器局部放电特征提取及故障识别

Feature Extraction and Fault Identification of Partial Discharge in Multi-signal Transformer

安琪 1杨攀烁 2安国庆 2韩晓慧 2杨晓锐 2李沂隆 2刘东升 3何平 4王苏 5高伟超5
扫码查看

作者信息

  • 1. 河北科技大学电气工程学院,石家庄 050018;华北电力大学河北省电力物联网技术重点实验室,保定 071003
  • 2. 河北科技大学电气工程学院,石家庄 050018
  • 3. 保定天威保变电气股份有限公司河北省输变电装备电磁与结构性能重点实验室,保定 071056
  • 4. 保定天威新域科技发展有限公司,保定 071056
  • 5. 河北旭辉电气股份有限公司,石家庄 050081
  • 折叠

摘要

局部放电模式识别已被确定为监测电气设备运行的标准诊断工具.智能状态识别是变压器状态识别的发展趋势,但现有的智能状态识别存在模型单一、识别精度低等缺点.为了克服这一缺点,提出了一种基于D-S证据理论的多维信息源变压器局部放电故障识别方法.首先,采用小波包分解对局部放电高频信号和超声信号进行能量特征的提取.然后,根据选取的特征集,分别建立卷积神经网络(convolutional neural networks,CNN)模型和卷积神经网络-支持向量机(CNN-SVM)模型.最后,通过D-S(dempster-shafer)证据理论对两种信号识别模型的输出结果进行有效的整合.结果表明,以所提出的小波包分解能量特征集作为输入向量,两种信号CNN-SVM模型的识别率达到了 95%和81.67%,分别较CNN提升了 3.33%和8.34%.D-S证据理论融合方法的整体性能优于CNN和CNN-SVM,准确度和一致性较融合之前分别提高3.33%和16.66%;验证了本文方法的有效性和可行性.

Abstract

Partial discharge pattern recognition has been established as a standard diagnostic tool for monitoring the operation of electrical equipment.Intelligent state recognition is the development trend of transformer state recognition,but the existing intelligent state recognition has the disadvantages of single model and low recognition accuracy.In order to overcome this shortcoming,a multi-dimensional information source transformer partial discharge fault identification method based on D-S evidence theory was proposed.Firstly,wavelet packet decomposition was used to extract the energy features of high frequency partial discharge signal and ultrasonic signal.Then,according to the selected feature set,the CNN(convolutional neural networks)model and CNN-SVM(convolutional neural networks-support vector machine)model were established respectively.Finally,the D-S(dempster-shafer)evidence theory was used to effectively integrate the output results of the two signal recognition models.The results show that using the proposed wavelet packet decomposition energy feature set as input vector,the recognition rates of the two signals CNN-SVM models reach 95%and 81.67%,which are 3.33%and 8.34%higher than CNN respectively.The overall performance of D-S evidence theory fusion method is better than that of CNN and CNN-SVM,and the accuracy and consistency are improved by 3.33%and 16.66%respectively.The effectiveness and feasibility of this method are verified.

关键词

局部放电/小波包分解/D-S证据理论/信号融合/故障诊断

Key words

partial discharge/wavelet packet decomposition/D-S evidence theory/signal fusion/fault diagnosis

引用本文复制引用

出版年

2024
科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
段落导航相关论文