首页|基于特征融合的多分类运动想象脑电识别方法及应用

基于特征融合的多分类运动想象脑电识别方法及应用

扫码查看
为实现脑卒中患者下肢自主康复训练,外骨骼技术逐渐与脑机接口(brain computer interface,BCI)相结合,但多分类运动想象(motor imagery,MI)脑电信号(electroencephalogram,EEG)一直存在特征提取困难和识别准确率低的问题.故提出了一种基于小波独立成分分析(wavelet independent component correlation algorithm,WICA)和共空间模式(common spatial pat-terns,CSP)的脑电信号多分类优化支持向量机算法(support vector machine,SVM).该方法使用基于粒子群优化(particle swarm optimization,PSO)的支持向量机进行分类识别.研究结果表明,该方法平均分类准确率相比于其他方法有较大提高,证明了该算法可以有效提取脑电特征,并具有较好的运动想象脑电信号识别效果.同时,通过运动想象与外骨骼装置结合,验证了在线实时进行脑电控制的可行性.
Multi-classification Motor Imagery EEG Recognition Method and Application Based on Feature Fusion
In order to achieve autonomous lower limb rehabilitation training for stroke patients,exoskeletons are gradually combined with BCI(brain computer interface).Still,multi-class MI(motor imagery)EEG(electroencephalogram)has always had characteristics of difficulty in extraction and low recognition accuracy.A multi-classification optimized support vector machine algorithm for EEG signals based on WICA(wavelet independent component analysis)and CSP(common spatial patterns)was proposed.PSO(particle swarm optimization)was used to train a support vector machine for classification.It proves that the algorithm can effectively extract EEG features and has a better recognition effect of motor imagery EEG signals.The feasibility of online and real-time EEG control was verified by combining motor imagery and exoskeleton devices.

MI(motor imagery)WICA(wavelet independent component analysis)CSP(common spatial patterns)SVM(support vector machine)lower limb exoskeleton

张保旭、梁彤、孙田雪、魏笑、赵彦峻

展开 >

山东理工大学机械工程学院,淄博 255049

山东省精密制造与特种加工重点实验室,淄博 255049

运动想象 独立成分分析 共空间模式 支持向量机 下肢外骨骼

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(34)