首页|井漏预测模型的超参数优化与解释:以伊朗马伦油田为例

井漏预测模型的超参数优化与解释:以伊朗马伦油田为例

扫码查看
为有效管理泥浆流失这一钻井工程中的挑战,针对伊朗马伦油田的不同泥浆流失严重程度,构建了 4个平衡数据集并进行了分类研究.通过采用不同交叉验证策略并以多个平均性能指标作为优化目标,寻找到了多个模型的最优超参数,并最终确定了最佳模型及其参数配置.结果表明,所得到的最佳模型在精度、召回率和F1分数等方面都有显著提升.特别的,对于不同的井漏程度数据集使用不同的模型(如极致梯度提升树和类别型梯度提升树),结果中各项指标都处于0.95以上,显示了模型的出色性能.此外,通过计算沙普利解释值对最优模型进行解释,进一步深入理解了预测行为.可见,超参数优化对于增强模型性能有重大影响,而模型解释对于理解预测机制是必要的.
Drilling Fluid Lost-circulation Prediction Model Hyperparameter Optimization and Interpretation:A Case Study of the Marun Field in Iran
To ensure an effective management of circulation loss,a critical challenge within drilling operations,four balanced data-sets was developed aimed at categorizing varying severity levels of circulation loss at Iran's Marun Oil Field.Employing diverse cross-validation strategies and setting multiple average performance metrics as the optimization objectives,optimal hyperparameters was iden-tified across several models,subsequently determining the best model and its parameter setup.It was found that the selected optimal model exhibited significant enhancements in accuracy,recall,and F1-scores.Specifically,different models,such as extreme gradient boosting and categorical gradient boosting,were applied to datasets corresponding to various well leakage degrees,with all performance met-rics surpassing the 0.95 threshold,thereby illustrating the models'superior performance.Moreover,by computing shapley Additive explana-tions values,the study provided deeper insights into the predictive behaviors,underscoring the substantial influence of hyperparameter opti-mization on model performance enhancement.Additionally,model interpretation emerged as crucial for a profound understanding of the pre-dictive mechanisms,highlighting the necessity of employing such techniques in contemporary research to elucidate model functionalities and outcomes.

lost-circulationmachine learningcross-validationhyperparameter optimizationmodel interpretation

李恒丰、李琳、赵志峰

展开 >

西安石油大学电子工程学院,西安 710065

陕西省油气井重点测控实验室,西安 710065

井漏 机器学习 交叉验证 超参数优化 模型解释

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(35)