首页|基于灰狼参数寻优的组合趋近律滑模光伏并网逆变控制

基于灰狼参数寻优的组合趋近律滑模光伏并网逆变控制

扫码查看
针对传统光伏并网逆变控制在环境发生变化时,无法兼顾快速性和稳定性的问题,提出一种基于灰狼优化算法(grey wolf optimizer,GW O)的组合趋近律滑模逆变器最优控制方法.首先,该方法对控制系统的电压外环采用积分滑模来跟踪直流母线电压,使其保持恒定;然后,电流内环采用d、q轴电流建立带误差积分项的滑模切换面函数,来分别跟踪有功功率和无功功率,实现光伏逆变器的并网控制.为了能有效减少系统的抖振,使系统稳定在滑模面上,内外环控制中引入基于指数趋近律和变速趋近律的组合趋近律.最后,利用灰狼优化算法的迭代寻优能力,对设计的滑模面参数进行全局寻优,以提升系统的控制精度.通过仿真结果分析,所提控制方法对并网电流能够实现快速精准有效跟踪,从而提升了光伏并网系统的稳定性和抗干扰能力.
Optimal Control of Combined Reaching Law Sliding Mode Photovoltaic Grid-connected Inverter Based on Grey Wolf Parameter Optimization
Aimed at the problem that the conventional grid-connected PV inverters do not take into account the dynamic and steady-state performances when the surrounding environment changes,an optimal control method of combined reaching law sliding mode inverter based on grey wolf optimizer(GWO)was proposed.Firstly,the method used the integral sliding mode to track the DC bus voltage in the outer loop of the control system to keep it constant.Then,to reach the grid-connected control of the PV inverter,the sliding mode switching surface function with error integral term was established by the d and q axis current in the current inner loop to track the active power and reactive power respectively.Furthermore,in order to reduce the chattering of the system effectively and stabilize the system on the sliding mode,the combination reaching law of exponential reaching law and variable speed reaching law was introduced into the inner and outer loop control.Finally,to improve the accuracy of control system,the global optimization of sliding mode surface parameters was carried out with the iterative optimization ability of grey wolf optimization.The simulation results show that the proposed control method enable fast and exactly track the grid-connected currents,thus,the stability and anti-interference ability of the grid-connected photovoltaic system is improved as well.

photovoltaic grid-connected invertercombinatorial reaching lawsliding mode controlgrey wolf optimizer(GWO)parameter optimization

李成丰、傅晓帆、熊国江、吕刚

展开 >

贵州大学电气工程学院,贵阳 550025

贵州大学勘察设计研究院有限责任公司,贵阳 550025

中国南方电网超高压输电公司贵阳局,贵阳 550025

光伏并网逆变器 组合趋近律 滑模控制 灰狼优化算法(GW0) 参数优化

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(36)