首页|基于时序LSTM-MLP模型的输电线路非平稳型覆冰厚度预测

基于时序LSTM-MLP模型的输电线路非平稳型覆冰厚度预测

扫码查看
在"两微"环境中,电力系统中输电线路受到严重覆冰的威胁,对电网运行的稳定性构成潜在风险.为提高事前预警运维效率,以经典输电线路的覆冰厚度监测时间序列为研究对象,创新地提出多变量长短期记忆-多层感知机(long short-term memory-multilayer perceptron,LSTM-MLP)模型,旨在建立合理可靠的覆冰厚度预测方法,以更好地捕捉输电线路覆冰监测数据的大范围波动.为此,使用LSTM-MLP模型分别对不同数据容量的导线运维数据进行预测并对比分析.模型使用导线覆冰量的时间序列数据对覆冰厚度进行预测,并引入温度、湿度、风力等多种覆冰控制因素提升模型在波动数据上的预测能力.为进一步提升模型性能,引入灰狼算法对模型超参数进行优化处理.结果显示:优化后的多变量LSTM-MLP模型对12个测试数据地覆冰厚度预测具有较低的均方根误差(root mean square err-or,RMSE)、平均绝对误差值(mean absolute error,MAE)和较高的决定系数(R2),分别为1.076 5、0.745 5和0.889 3.对30个测试数据的预测结果,RMSE、MAE和R2分别为0.881 4、0.523 8和0.931 5.这一系列结果相对于单变量LSTM-MLP模型更接近实际监测值,从而验证了多变量LSTM-MLP模型的高精度和可靠性.综上所述,多变量LSTM-MLP模型能够较好地捕捉输电线路覆冰数据的波动性,为非平稳型覆冰厚度的预测和预警提供了一种创新且高效的解决方案.
Icing Thickness Prediction of Transmission Lines Considering Non-stationary Series with Sequential LSTM-MLP Model
In the"two micro"environment,the transmission lines in the power system are threatened by serious ice,which poses a potential risk to the stability of the power grid operation.In order to improve the efficiency of pre-warning operation and maintenance,an innovative long short-term memory-multilayer perceptron(LSTM-MLP)model based on the monitoring time series of ice cover thickness of classical transmission lines was proposed.A reasonable and reliable ice thickness prediction method was established to better capture the wide range fluctuation of ice monitoring data of transmission lines.For this reason,the LSTM-MLP model was used to predict and compare the wire operation and maintenance data of different data capacities.The time series data of the ice-covering amount of the conductor was used to predict the ice-covering thickness.Various ice-controlling factors such as temperature,humidity and wind power were introduced to improve the prediction ability of the model on the fluctuation data.In order to further improve the performance of the model,grey wolf algorithm was utilized to optimize the model hyperparameters.The results demonstrate that the optimized multivariable LSTM-MLP model has lower root mean square error(RMSE),mean absolute error(MAE)and higher coefficient of determination(R2)for predicting ground ice thickness of 12 test datasets,which war 1.076 5,0.745 5 and 0.889 3 respectively.For the predicted results of 30 test datasets,RMSE,MAE and R2 are 0.881 4,0.523 8 and 0.931 5,respectively.These results indicated closer proximity to the actual monitoring values than the univariate LSTM-MLP model,thus verifying the high accuracy and reliability of the multivariable LSTM-MLP model.In summary,the multivariable LSTM-MLP model effectively capture the fluctuation of transmission line ice cover data,and provides an innovative solution for accurately predicting non-stationary ice cover thickness.

icing thickness predictiontime seriesgrey wolf algorithmdeep learning

苏仁斌、熊卫红、刘先珊、于明智、周庆

展开 >

国家电网有限公司华中分部,武汉 430072

重庆大学土木工程学院,重庆 400045

重庆大学计算机学院,重庆 400045

覆冰厚度预测 时间序列 灰狼算法 深度学习

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(36)