首页|基于GRA-GWO-LSTM的多元负荷协同预测方法

基于GRA-GWO-LSTM的多元负荷协同预测方法

扫码查看
精准的多元负荷预测有助于综合能源系统的合理规划和优化运行.针对多元负荷预测时输入参数难确定和模型网络参数较难合理设置的问题,提出一种建筑电、冷、热多元负荷协同预测方法.首先,考虑到不同输入参数对多元负荷的影响,采用灰色关联度分析法(grey relation analysis,GRA)计算各输入参数与负荷间的相关性,选择灰色关联度大于0.6的参数作为模型输入;同时利用灰狼优化算法(grey wolf optimizer,GWO)对长短时记忆神经网络(long short-term memory,LSTM)中的关键网络参数进行优化,建立GRA-GWO-LSTM多元负荷预测模型;最后,以亚利桑那州立大学为例,通过与单一神经网络模型和混合神经网络模型GWO-LSTM对比,所提预测模型在电、冷、热负荷长期预测上具有更高的预测精度,较LSTM模型和GWO-LSTM模型的平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了 31.64%和23.47%,且其对短期负荷预测也具有良好预测性能,可用于指导综合能源系统的规划和智能化运行.
Multi-energy Load Forecasting Method Based on GRA-GWO-LSTM
Accurate multi-energy load forecasting is helpful to the rational planning and optimal operation of integrated energy systems.For solving the problems that it is very difficult to determine input parameters and set appropriate model network parameters in the multi-energy load forecasting model,a collaborative forecasting method for multi-energy load of building including electricity load,cooling load and heating load was developed.Firstly,considering the influence of different input parameters on multiple loads,the grey relation analysis(GRA)was used to calculate the correlation between input parameters and loads,and the parameters with values of grey relation greater than 0.6 were selected as the model inputs.At the same time,the grey wolf optimizer(GWO)was used to optimize the key network parameters of the long short-term memory neural network(LSTM),and the multi-energy load forecasting model of GRA-GWO-LSTM was developed.Finally,taking Arizona State University as an example,compared with the single neural network model and the hybrid neural network(GWO-LSTM)model,the proposed prediction model has higher prediction accuracy in long-term forecasting of electricity,cooling,and heating loads.Compared with the LSTM model and GWO-LSTM model,the mean absolute percentage error(MAPE)of the proposed prediction model is reduced by 31.64%and 23.47%,respectively.Furthermore,the GRA-GWO-LSTM model also has good predictive performance for short-term load forecasting and can be used to guide the design and intelligent operation of integrated energy systems.

multi-energy load forecastingdeep learninglong short-term memory(LSTM)grey wolf optimizer(GWO)grey relation analysis(GRA)

李文、卜凡鹏、王坤、高宇琪、时国华

展开 >

中国电力科学研究院有限公司,北京 100192

国网天津市电力公司,天津 300010

华北电力大学能源动力与机械工程学院,保定 071003

多元负荷预测 深度学习 长短时记忆神经网络(LSTM) 灰狼优化算法(GWO) 灰色关联度分析法(GRA)

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(36)