首页|基于YOLOv8n的小目标交通标志检测算法

基于YOLOv8n的小目标交通标志检测算法

扫码查看
针对传统交通标志检测算法识别精度低和漏检误检率高的问题,提出一种基于YOLOv8n的小目标交通标志检测算法.该算法首先使用Conv-SPD模块替换跨步卷积实现下采样,以减少浅层特征信息的丢失;然后添加小目标检测层,能够有效提高模型小目标感知能力;其次嵌入多尺度注意力机制融合深浅层空间语义特征,从而更好地捕获像素级成对关系;再次为进一步提高模型检测精度,采用MPDIoU损失函数计算预测框回归损失;最后在数据集TT00K、GTSDB与CCTSDB上进行验证.实验结果表明:所提模型的检测精度分别达到87.3%、93.2%和98.4%,参数量仅为2.031 MB,同时满足实时检测标准.
Small Target Traffic Sign Detection Algorithm Based on YOLOv8n
Traditional traffic sign detection algorithms have attracted growing attention from experts and scholars while improving the recognition accuracy and reducing the missed and/or false detection rate remains a great challenge.A small target traffic sign detection algorithm was proposed based on YOLOv8n.Firstly,the algorithm used a Conv-SPD module instead of step convolution to downsample and retain shallow feature information.Then,a small object detection layer was added,which can effectively improve the model's ability to perceive small objects.Secondly,a multi-scale attention mechanism was incorporated to fuse deep and shallow spatial semantic features for better capturing of pixel-level pairwise relationships.To further enhance model detection accuracy,the mode utilized the MPDIoU loss function to compute the regression loss of the predicted box.Finally,it was verified on the data sets TT00K,GTSDB and CCTSDB.Experimental results show that the detection accuracy of the proposed model reaches 87.3%,93.2%and 98.4%respectively,and the parameter size is only 2.031 MB,while meeting the real-time detection standards.

YOLOv8traffic signreal-time detectionMPDIoU

宋京京、张振利

展开 >

江西理工大学电气工程与自动化学院,赣州 341000

YOLOv8 交通标志 实时检测 MPDIoU

2024

科学技术与工程
中国技术经济学会

科学技术与工程

CSTPCD北大核心
影响因子:0.338
ISSN:1671-1815
年,卷(期):2024.24(36)